<span>Free electrons may be transferred between bodies by "Contact Action"
When positively charged body comes close to a negatively charged body, then electron flows from positively to negatively charged body
In short, Your Answer would be Option B
Hope this helps!</span>
1). an electric motor running
Electrical energy is changing into kinetic energy and a little bit of heat
2). light a match
The chemical energy stored in the match head changes into light and heat energy.
3). a light bulb
Electrical energy is changed into light and heat energy.
When person is observing destructive interference at 0.20 m distance from the equidistant position then we can say that path difference must be equal to half of the wavelength
now we will have

now we know that
y = 0.20 m
d = 2.4 m
L = 10 m
now here we have


now frequency of wave is given as


Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
Answer:
the net toque is τ=8.03* 10⁻⁴ N*m
Explanation:
Assuming the disk has constant density ρ, the moment of inertia I of is
I = ∫r² dm
since m = ρ*V = ρπR² h , then dm= 2ρπh r dr
thus
I = ∫r²dm = ∫r²2ρπh r dr =2ρπh ∫r³ dr = 2ρπh (R⁴/4- 0⁴/4)= ρπhR⁴ /2= mR²/2
replacing values
I = mR²/2= 0.017 kg * (0.06 m)²/2 = 3.06 *10⁻⁵ kg*m²
from Newton's second law applied to rotational motion
τ= Iα , where τ=net torque and α= angular acceleration
since the angular velocity ω is related with the angular acceleration through
ω= ωo + α*t → α =(ω-ωo)/t = (21 rad/s-0)/0.8 s = 26.25 rad/s²
therefore
τ= Iα= 3.06 *10⁻⁵ kg*m²*26.25 rad/s² = 8.03* 10⁻⁴ N*m