<u>Answer</u>:
316.67 Hz
<u>Explanation</u>:
Given:
Wave velocity ( v ) = 95 m / sec
wavelength ( λ ) = 0.3 m
We have to calculate Frequency ( f ) :
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 95 / 0.3 Hz
= > f = 950 / 3 Hz
= > f = 316.67 Hz
Hence, frequency of sound is 316.67 Hz.
S = 16t² where t = time in seconds.
Let S = 1190ft then solve for t:
16t² = 1190
t² = 74.4
t = 8.62s
Sure: ths is called protyping and lets yu get a sende fo the effeciveness tof the cahnge and the cost of the change.
<span>A - just like the scientific principle syu what to know what other know or have learned. Example would it be silly to build a nuclear power de-salinatiztion plant when a dam in the mountains wuld dothe savme thng and perhaps have the advatage of using local labor and preveinting floods and givng of hydro eletic power. </span>
<span>A a process is a technological soultion it uses tools, machines, chemical to effect an otu come.</span>
Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>
it would be 'B' because it speeds up reactions