Answer:
D
Explanation:
The answer is D. Solutions you cannot see the separate substances. however in a mixture you can see the different substances. So the correct choice is D
Based on the calculations, the speed required for this satellite to stay in orbit is equal to 1.8 × 10³ m/s.
<u>Given the following data:</u>
- Gravitational constant = 6.67 × 10⁻¹¹ m/kg²
- Mass of Moon = 7.36 × 10²² kg
- Distance, r = 4.2 × 10⁶ m.
<h3>How to determine the speed of this satellite?</h3>
In order to determine the speed of this satellite to stay in orbit, the centripetal force acting on it must be sufficient to change its direction.
This ultimately implies that, the centripetal force must be equal to the gravitational force as shown below:
Fc = Fg
mv²/r = GmM/r²
<u>Where:</u>
- m is the mass of the satellite.
Making v the subject of formula, we have;
v = √(GM/r)
Substituting the given parameters into the formula, we have;
v = √(6.67 × 10⁻¹¹ × 7.36 × 10²²/4.2 × 10⁶)
v = √(1,168,838.095)
v = 1,081.13 m/s.
Speed, v = 1.8 × 10³ m/s.
Read more on speed here: brainly.com/question/20162935
#SPJ1
C.figure 3 is the answer had the same and got is right
<u>Answer:</u>
<em>The average speed of the car is 66.9 km/h</em>
<u>Explanation:</u>
Here distance covered with the speed <em>57 km/h=7 km </em>
distance covered with the speed of <em>81 km/h=7 km</em>
<em>Average speed is equal to the ratio of total distance to the total time.
</em>
<em>total distance= 7 + 7= 14 km </em>
<em>
</em>
<em>time taken to cover the first 7 km= 7/57 h </em>
<em>time taken to cover the second part of the journey = 7/81 h
</em>
<em>average speed =
</em>
<u><em>Shortcut:
</em></u>
<em>When equal distances are covered with different speeds average speed=2 ab/(a+b) where a and b are the variable speeds in the phases.
</em>