Explanation:
A student solving for the acceleration of an object has applied appropriate physics principles and obtained the expression :

Where


m = 7 kg
So, the correct step for obtaining a common denominator for the two fractions in the expression in solving for a is (a) and the value of a is :


Hence, the correct option is (a).
Answer:
in co2 there is one atom of carbon
Explanation:
-- The area under a velocity/time graph, between two points in time, is the difference in displacement during that period of time.
-- The area under a speed/time graph, between two points in time, is the distance covered during that period of time.
Answer:
As indicated by Newton's law of attraction each article or body in the universe draws in every single item towards one another and that power of fascination is straightforwardly relative to the result of their masses and contrarily corresponding to the square of the distance between them.
The power of gravity between two articles will diminish as the distance between them increments. The two most significant elements influencing the gravitational power between two items are their mass and the distance between their focuses. As mass increments, so does the power of gravity, however an increment in distance mirrors a reverse proportionality, which makes that power decline dramatically.
At that point by Newton's All inclusive Law of Attractive energy;
F=GMm/R^2
Mm= result of the majority
R=Distance Between the two masses by focus.
On the off chance that R is multiplied, new force=GMm/(2R)^2
=GMm/4R^2
Unique Power/New Force=4/1
F/4=New Power
Explanation:
It is given that the number of electrons passing through the cross-sectional area in 1 s is
. Also, we know that charge on an electron is
, then negative charge crossing to the left per second is as follows.
I- =
I- = 0.544 A
As it is given that the number of protons crossing per second is
, as the charge on the proton is
, then positive charge crossing to the right per second is calculated as follows.
I+ =
I+ = 0.224 A
I = l I+ l + l I- l
So, I = 0.544 + 0.224
= 0.768 A
Thus, we can conclude that the current in given hydrogen discharge tube is 0.768 A.