Answer:
because when an object approaches the speed of light, it's mass starts to increase exponentially, and would be infinite at the speed of light. It would therefore require MORE than an infinite amount of energy to accelerate even a single electron to the speed of light
Answer:
option (E) is correct.
Explanation:
Work done is defined as the product of force and the distance in the direction of force.
force, f = 100 N
Coefficient of friction, = 0.25
distance = 15 m
So, net force F = f - friction force
F = 100 - 0.25 x m g
Work = (100 - 0.25 mg) x d cosθ
For minimum work, the angle should be maximum.
So, the value of θ is 76°.
thus, option (E) is correct.
Milliliters if you're doing science.
Answer:
C-less than
Explanation:
Distance is total distance traveled (1000m here if you stop where you started).
Displacement is your final distance from where you started (0m if you stop where you started).
0m<1000m
KE=1/2 m v^2
KE= .5 x 2kg x 15m/s to the 2nd power
KE=225 km/s