Answer:
Distance travelled is 7 meters and the displacement is 3 meters
F = 750 N (Force)
d = 10 m (displacement
)
t = 25 s (time)
L = ? (Mechanical work
) = (Energy)
P = ? (Power)
Solve:
L = F × d = 750 × 10 = 7500 Joules
P = L / t = 7500 / 25 = 300 Watts
Answer: The force constant k is 10600 kg/s^2
Step by step:
Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.
Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.
The total energy at the point h=2m is:
The total energy at the point h=0m is:
The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:
Answer:
Explanation:
From the question we are told that:
Force P=88Ib
Mass of crate M_c=210Ib
Generally the equation for Frictional force F is mathematically given by
with
Therefore since Static Friction supersedes applied force body remains at rest.
Frictional force =88Ib (negative)
The formula v=fλ can be used here.
326=2500*λ
Note the 2500 as 2.5kHz is 2.5 thousand Hz.
λ = 326/2500
= 0.1304m = 0.130m