Answer:
Assume that the sack was initially close to the sea level. Its weight will increase even though its mass stays the same.
Explanation:
The weight of an object typically refers to the size of the planet's gravitational attraction (a force) on this object. That's not the same as the mass of the object. The weight of an object at a position depends on the size of the gravitational field there; on the other hand, the mass of the object is supposed to be same regardless of the location- as long as the object stays intact.
Let
denote the strength of the gravitational field at a certain point. If the mass of an object is
, its weight at that point will be
.
Indeed,
on many places of the earth. However, this value is accurate only near the sea level. The equation for universal gravitation is a more general way for finding the strength of the gravitational field at an arbitrary height. Let
denote the constant of universal gravitation, and let
denote the mass of the earth. At a distance
from the center of the earth (where
.
The elevation of many places in Bhutan are significantly higher than that of many places in India. Therefore, a sack of potato in Bhutan will likely be further away from the center of the earth (larger
) compared to a sack of potato in India.
Note, that in the approximation, the value of
is (approximately, because the earth isn't perfectly spherical) inversely proportional to the distance from the center of the planet. The gravitational field strength
On the other hand, the weight of an object of fixed mass is proportional to the gravitational field strength. Therefore, the same bag of potatoes will have a smaller weight at most places in Bhutan compared to most places in India.
As you move around there is a change in: electronegativies, ionisation energies, atomic radius etc. different amounts of these properties are going to effect how the element acts
Answer:
pH = 12.22
Explanation:
<em>... To make up 170mL of solution... The temperature is 25°C...</em>
<em />
The dissolution of Barium Hydroxide, Ba(OH)₂ occurs as follows:
Ba(OH)₂ ⇄ Ba²⁺(aq) + 2OH⁻(aq)
<em>Where 1 mole of barium hydroxide produce 2 moles of hydroxide ion.</em>
<em />
To solve this question we need to convert mass of the hydroxide to moles with its molar mass. Twice these moles are moles of hydroxide ion (Based on the chemical equation). With moles of OH⁻ and the volume we can find [OH⁻] and [H⁺] using Kw. As pH = -log[H⁺], we can solve this problem:
<em>Moles Ba(OH)₂ molar mass: 171.34g/mol</em>
0.240g * (1mol / 171.34g) = 1.4x10⁻³ moles * 2 =
2.80x10⁻³ moles of OH⁻
<em>Molarity [OH⁻] and [H⁺]</em>
2.80x10⁻³ moles of OH⁻ / 0.170L = 0.01648M
As Kw at 25°C is 1x10⁻¹⁴:
Kw = 1x10⁻¹⁴ = [OH⁻] [H⁺]
[H⁺] = Kw / [OH⁻] = 1x10⁻¹⁴/0.01648M = 6.068x10⁻¹³M
<em>pH:</em>
pH = -log [H⁺]
pH = -log [6.068x10⁻¹³M]
<h3>pH = 12.22</h3>
Answer:However, unlike the outer core, the inner core is not liquid or even molten. The inner core's intense pressure—the entire rest of the planet and its atmosphere—prevents the iron from melting. The pressure and density are simply too great for the iron atoms to move into a liquid state.
Explanation:please give brainliest