Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Answer:
C) hydrogen bonding
Explanation:
All atoms and molecules have London Dispersion Forces between them, but they are usually overshadowed but the much stronger forces. In this scenario the major attractive force in HF molecules are hydrogen bonds. Hydrogen bonds are electrostatic forces of attraction found when Hydrogen is bonded to a more electronegative atom such as Oxygen, Chlorine and Fluorine.
C. 343K
70 degrees C + 273 = 343
Answer:
what are we doing there???
bye, have a nice day!
Answer:
Triplet oxygen
Explanation:
Based on my research it is called Triplet Oxygen, if this is wrong I'm sorry