Answer:
Option C = same period.
Explanation:
All these elements belongs to second period of periodic table. This period consist of eight elements lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine and neon.
Electronic configuration of lithium:
Li₃ = [He] 2s¹
Electronic configuration of beryllium:
Be₄ = [He] 2s²
Electronic configuration of boron:
B₅ = [He] 2s² 2p¹
Electronic configuration of carbon:
C₆ = [He] 2s² 2p²
Electronic configuration of nitrogen:
N₇ = [He] 2s² 2p³
Electronic configuration of oxygen:
O₈ = [He] 2s² 2p⁴
Electronic configuration of fluorine:
F₉ = [He] 2s² 2p⁵
Electronic configuration of neon:
Ne₁₀ = [He] 2s² 2p⁶
All these elements present in same period having same electronic shell.
However their families, valance electrons and group are different. Boron have three valance electrons and belongs to group 3A. Carbon belongs to group 4A and have 4 valance electrons. Nitrogen belongs to group 5A and have five valance electrons. Oxygen belongs to group 6A and have six valance electrons. Fluorine belongs to group 7A and have seven valance electrons.
Respiration. That is the process.
24 molecules of H2O are needed by the plant to produce 4 molecules of sugar.
<h2>What is
photosynthesis?</h2>
The process by which plants convert carbon dioxide, water, and sunlight into oxygen and sugar-based energy is known as photosynthesis.
<h3>The photosynthesis equation is as follows:</h3>
6CO2 + 6H2O + Sunlight → C6H12O6 + 6O2
The following three significant activities are involved in photosynthesis:
1. Chlorophyll absorbs light energy.
2. Water molecules are divided into hydrogen and oxygen and light energy is converted to chemical energy.
3. Carbon dioxide is converted to sugars.
Therefore, a plant needs four molecules of H2O and four molecules of CO2 to make one molecule of glucose or sugar, hence a plant needs 24 molecules of H2O and 24 molecules of CO2 to make four molecules of sugar.
Learn more about photosynthesis here:
brainly.com/question/19160081
#SPJ4
Answer:
36.63 Torr
Explanation:
You need to use two expressions, one for pressure and the other with the relation of density and height of the column.
For the pressure:
P = h * d * g (1)
h is height.
d density
g gravity
The second expression put a relation between the densities and height of the column so:
d1/d2 = h1/h2 (2)
let 1 be the phthalate, and 2 the mercury.
Let's calculate first the relation of density:
d1/d2 = 13.53 / 1.046 = 12.93
Now with the first expression, we can calculate the pressure so:
P = hdg
We have two compounds so,
h1d1g = h2d2g ---> gravity cancels out
From here, we can solve for h2:
h2 = h1*(d1/d2)
replacing:
h2 = 459 / 12.53
h2 = 36.63 mm
1 mmHg is 1 torr, therefore the pressure of the gas in Torr would be 36.63 Torr