Answer:
The value of he change in Gibbs free energy ΔG = - 18.083 KJ
Explanation:
Given data
The concentration of glucose inside a cell is (P) = 0.12 m M
The concentration of glucose outside a cell is (R) = 12.9 m M
No. of moles = 1.5 moles
The change in Gibbs free energy
ΔG = RT ㏑
ΔG = 8.314 × 310 ㏑
ΔG = - 12.055 
Since No. of moles = 1.5 moles
Therefore
ΔG = - 12.055 × 1.5
ΔG = - 18.083 KJ
This the value of he change in Gibbs free energy.
I got on here because I don't understand the question but I did my best to answer because I noticed you asked 3 days ago. IF I'm right the answer is D. My diagram shows
A at -50 °C
B at 0 °C
C at 50 °C
D at 100 °C (gas to liquid or liquid to gas)
And E at 150 °C
So I hope I'm right because I'm answering the same question.
Lipids is a kind of biochemical that does not dissolve in water and makes up the cell walls fats oil and waxes
Answer:
50000ppm and 0.855M.
Explanation:
ppm is an unit of chemistry defined as the ratio between mg of solute (NaCl) and Liters of solution. Molarity, M, is the ratio between moles of NaCl and liters
A 5% (w/v) NaCl contains 5g of NaCl in 100mL of solution.
To solve the ppm of this solution we need to find the mg of NaCl and the L of solution:
<em>mg NaCl:</em>
5g * (1000mg / 1g) = 5000mg
<em>L Solution:</em>
100mL * (1L / 1000mL) = 0.100L
ppm:
5000mg / 0.100L = 50000ppm
To find molarity we need to obtain the moles of NaCl in 5g using its molar mass:
5g * (1mol / 58.5g) = 0.0855moles NaCl
Molarity:
0.0855mol NaCl / 0.100L = 0.855M
The answer should be D, cells can only create an identical copy of the original cell.