Answer: Molar mass of Al = 26.98 g/mol
mass of Al = 12 g
mol of Al = (mass)/(molar mass)
= 12/26.98
= 0.4448 mol
According to balanced equation
mol of AlCl3 formed = moles of Al
= 0.4448 mol
Answer: 0.445 mol
hope this help boo❤️❤️❤️
Explanation:
Solution :
Comparing the solubility of silver chromate for the solutions :
----- Less soluble than in pure water.
----- Less soluble than in pure water.
----- Similar solubility as in the pure water
----- Similar solubility as in the pure water
The silver chromate dissociates to form :

When 0.1 M of
is added, the equilibrium shifts towards the reverse direction due to the common ion effect of
, so the solubility of
decreases.
Both
and
are neutral mediums, so they do not affect the solubility.
<span>
Titanium tribromide, titanium (III) bromide, or titanous bromide.
</span>
Answer:
See Explanation
Explanation:
moles of NH₃ = 11.9g/17.03 g/mol = 0.699 mole
moles of CN₂OH₄ = 1/2(0.699) mole =0.349 mole
Theoretical yield of CN₂OH₄ = (0.349 mole)(60 g/mole) = 20.963 grams
%Yield = Actual Yield/Theoretical Yield x 100%
= 18.5g/20.963g x 100% = 88.25%
Answer:
Compound B has greater molar mass.
Explanation:
The depression in freezing point is given by ;
..[1]

Where:
i = van't Hoff factor
= Molal depression constant
m = molality of the solution
According to question , solution with 5.00 g of A in 100.0 grams of water froze at at lower temperature than solution with 5.00 g of B in 100.0 grams of water.
The depression in freezing point of solution with A solute: 
Molar mass of A = 
The depression in freezing point of solution with B solute: 
Molar mass of B = 

As we can see in [1] , that depression in freezing point is inversely related to molar mass of the solute.


This means compound B has greater molar mass than compound A,