Answer:
1. 12.6 moles
2. 8.95 moles
3. 2A + 5B → 3C
4. 48 moles
Explanation:
1. 2Fe + 3Cl₂ → 2FeCl₃
We assume the chlorine in excess. Ratio is 2:2
2 moles of Fe, can produce 2 moles of chloride
12.6 moles of Fe will produce 12.6 moles of chloride.
2. 2Fe + 3Cl₂ → 2FeCl₃
For the same reaction, first of all we need to convert the mass to moles:
500 g . 1mol / 55.85 g = 8.95 mol
As ratio is 2:2, the moles we have are the same, that the produced
4. The reaction for the combustion is:
2C₂H₆ (g) + 7O₂ (g) → 4CO₂ (g) + 6H₂O (l)
We assume the oxygen in excess.
Ratio is 2:6, so 2 mol of ethane produce 6 moles of water
Therefore 16 moles of ethane may produce (16 .6) / 2 = 48 moles
It is important to use low flame when evaporating water from a recovered filtrate because then the water and filtrate will not spatter and the filtrate can also be recovered after evaporating water.
If flame is not low then water as well as got spatter so it is important to use low flame so that the water and filtrate will not spatter.
How are the conditions at which phases are in equilibrium represented on a phase diagram?
Image result for How are the conditions at which phases are in equilibrium represented on a phase diagram?
Along the line between liquid and solid, the melting temperatures for different pressures can be found. The junction of the three curves, called the triple point, represents the unique conditions under which all three phases exist in equilibrium together. Phase diagrams are specific for each substance and mixture.
Answer:
The question you have provided is incomplete
Explanation: