Answer:
I don't really know
Explanation:
I really wanted to help you, but then I realized i didnt know how to
Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
Answer:
1470 W
Explanation:
Power: This can be defined as the rate at which work is done or energy is used up. The S.I unit of power is Watt (W).
The expression for power is given as,
P = Energy/time
P = mgh/t ...................... Equation 1
Where P = power, m = mass, h = height, t = time, g = acceleration due to gravity.
Given: m = 75 kg, g =9.8 m/s², h = 1 m, t = 1 s.
Substitute into equation 1
P = (75×1×9.8)/1
P = 735 W.
From the above,
1 hp = 735 W
2 hp = (2×735) W
2 hp = 1470 W.
Hence 2 hp = 1470 W
The thermal energy that is generated due to friction is 344J.
<h3>What is the thermal energy?</h3>
Now we know that the total mechanical energy in the system is constant. The loss in energy is given by the loss in energy.
Thus, the kinetic energy is given as;
KE = 0.5 * mv^2 =0.5 * 15.0-kg * (1.10 m/s)^2 = 9.1 J
PE = mgh = 15.0-kg * 9.8 m/s^2 * 2.40 m = 352.8 J
The thermal energy is; 352.8 J - 9.1 J = 344J
Learn more about thermal energy due to friction:brainly.com/question/7207509
#SPJ1
Can you please translate to English?