Answer:
Case A
Explanation:
given,
size of bacteria = 1 mm x 1 mm
velocity = 20 mm/s
size of the swimmer = 1.5 m x 1.5 m
velocity of swimmer = 3 m/s
Viscous force

for the bacteria


for the swimmer


from the above force calculation
In case B inertial force that represent mass is more than the inertial force in case of bacteria.
Viscous force is dominant in case of bacteria.
So, In Case A viscous force will be dominant.
Answer:
See the explanation below.
Explanation:
A lever is a simple machine that changes the magnitude and direction of the force applied to move an object. Minimizes the force needed to lift the object.
By means of the following image, we can see the principle of operation of a lever.
The load can be moved thanks to the force multiplied by the distance to the fulcrum.
Answer:
Explanation:
Using the atomic mass of pluonium atoms (244 g/mol), you can calculate the number of atoms in 47.0 g. Then, knowing that each plutonium atom has 96 protons, you calculate the number of protons in the 47.0 g sample. Finally, using the positive charge of one proton, you calculate the total positive charge in the 47.0 g of plutonium.
<u>1. Number of atoms of plutonium in 47.0 g</u>
- Number of moles = mass / atomic mass = 47.0 g / 244 = 0.1926 moles
- Number of atoms = number of moles × 6.022 × 10²³ atoms/mol
- Number of atoms = 0.1926 mol × 6.022 × 10²³ atoms/mol = 1.15998×10²³ atoms
<u>2. Number of protons</u>
- Number of protons = 1.15998×10²³ atoms × 96 protons/atom = 1.11385×10²⁵ protons
<u>3. Charge</u>
<u />
- Charge = charge of one proton × number of protons
- Charge = 1.602×10⁻¹⁹ C/proton × 1.11385×10²⁵ protons = 1.78×10⁶C
Answer:
-8.4°C
Explanation:
From the principle of heat capacity.
The heat sustain by an object is given as;
H = m× c× (T2-T1)
Where H is heat transferred
m is mass of substance
T2-T1 is the temperature change from starting to final temperature T2.
c- is the specific heat capacity of ice .
Note : specific heat capacity is an intrinsic capacity of a substance which is the energy substained on a unit mass of a substance on a unit temperature change.
Hence ; 35= 1× c× ( T2-(-25))
35= c× ( T2+25)
35 =2.108×( T2+25)
( T2+25)= 35/2.108= 16.60°{ approximated to 2 decimal place}
T2= 16.60-25= -8.40°C
C, specific heat capacity of ice is =2.108 kJ/kgK{you can google that}