The period of the pendulum is directly proportional to the square root of the length of the pendulum
Explanation:
The period of a simple pendulum is given by the equation

where
T is the period
L is the length of the pendulum
g is the acceleration of gravity
From the equation, we see that when the length of the pendulum increases, the period of the pendulum increases as the square root of L,
. This means that
The period of the pendulum is directly proportional to the square root of the length of the pendulum
From the equation, we also notice that the period of a pendulum does not depend on its mass.
#LearnwithBrainly
Answer:
a) 
b) 
Explanation:
given,
n =1.5 for glass surface
n = 1 for air
incidence angle = 45°
using Fresnel equation of reflectivity of S and P polarized light

using snell's law to calculate θ t


a) 

b) 

Answer:
energy is conserved
a force sets an object in motion. when the force is multiplied by the time of its application we call the quantity impulse which changes the momentum of that object. what do we call the quantity force x (times) distance, and what quantity can this change?
Answer:
Explanation:
An equilibrium is a state in which opposing forces or influences are banned.
An example of equilibrium is in economics when supply and demand are equal. An example of equilibrium is when you are calm and steady. An example of equilibrium is when hot air and cold air are entering the room at the same time so that the overall temperature of the room does not change at all.