Answer is C: Ability to see three-dimensional images of the surfaces of object
Explanation:
To enable the technician see fractures and broken particles in a better resolution as the SEM sees the peaks and valley of the structure.
Answer:
the peak wavelength when the temperature is 3200 K = 
Explanation:
Given that:
the temperature = 3200 K
By applying Wien's displacement law ,we have
T = 0.2898×10⁻² m.K
The peak wavelength of the emitted radiation at this temperature is given by
= 
= 
Hence, the peak wavelength when the temperature is 3200 K = 
-- We already know the rate of revolutions per time ...
it's 1 revolution per 0.065 sec. We just have to
unit-convert that to 'per minute'.
(1 rev / 0.065 sec) x (60 sec / min) = (1 x 60) / (0.065) = <em>923 RPM</em> (rounded)
_______________________________
-- 1 revolution = 2π radians
(2π rad) / (0.065 sec) = (2π / 0.065) = <em>96.66 rad/sec</em> (rounded)