At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
D, the primary colors of pigments mix to make white.
Cyan, magenta and yellow don't make white, instead they make black.
Answer:
Efficiency = 77%
Explanation:
Input energy = 570 J
Output energy = 440 J
To find the efficiency;
Substituting into the equation, we have;

Efficiency = 77.19 ≈ 77%
Therefore, the efficiency of the engine is 77 percent.
Answer:
Negative charge
Explanation:
Electron is an negative charge that spins around the nucleus.
Answer:
0.033 A
Explanation:
Current: This can be defined as the rate of flow of electric charge in a circuit.
The S.I unit of current is Ampere (A)
From Ohm's law.
V = IR ............................ Equation 1
Where V = Potential difference, I = current, R = resistance.
Making I the subject of the equation,
I = V/R................... Equation 2
Given: V = 52.3 V, R = 1570 Ω
Substitute into equation 2
I = 52.3/1570
I = 0.033 A.
Hence the current in the resistor = 0.033 A