Answer:
v(t) = 27 units
Explanation:
The function s(t) represents the position of an object at time t moving along a line such that,

and

We need to find the average velocity of the object over the interval of time [2,6]. The velocity of the object is equal to the total distance divided by time. It is given by :


v(t) = 27 units
So, the average velocity of the object is 27 units. Hence, this is the required solution.
Answer:
changes electrical energy into mechanical energy
Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
Answer:
715 N
Explanation:
Since the system is moving at a constant velocity, the net force must be 0. The tension on the road is equal and opposite direction with the kinetic friction force created by the road and the stuntman.
Let g = 9.8 m/s2
Gravity and equalized normal force is:
N = P = mg = 107*9.8 = 1048.6 N
Kinetic friction force and equalized tension force on the rope is

Answer:
is it 20kg. Two opposing forces pushing onto each other