Answer:
The correct option is;
∠A ≅ ∠X
Step-by-step explanation:
The given coordinates of the points of triangle ACB are;
A(-4, 4), C(-1, 3), B(-4, 0)
The given coordinates of the points of triangle XYZ are;
X(0, 8), Y(8, 8), Z(6, 2), therefore, we have
The length. l. of segment is given by the following formula;
![l = \sqrt{\left (y_{2}-y_{1} \right )^{2}+\left (x_{2}-x_{1} \right )^{2}}](https://tex.z-dn.net/?f=l%20%3D%20%5Csqrt%7B%5Cleft%20%28y_%7B2%7D-y_%7B1%7D%20%20%5Cright%20%29%5E%7B2%7D%2B%5Cleft%20%28x_%7B2%7D-x_%7B1%7D%20%20%5Cright%20%29%5E%7B2%7D%7D)
For the length of the segment AC; (x₁, y₁) = (-4, 4), (x₂, y₂) = (-1, 3), l = √(10)
For the length of the segment AB; (x₁, y₁) = (-4, 4), (x₂, y₂) = (-4, 0), l = 4
For the length of the segment BC; (x₁, y₁) = (-4, 0), (x₂, y₂) = (-1, 3), l = 3·√2
For the length of the segment XY; (x₁, y₁) = (0, 8), (x₂, y₂) = (8, 8), l = 8
For the length of the segment XZ; (x₁, y₁) = (0, 8), (x₂, y₂) = (6, 2), l = 6·√2
For the length of the segment ZY; (x₁, y₁) = (6, 2), (x₂, y₂) = (8, 8), l = 2·√(10
Therefore;
XY ~ AB, XZ ~ BC, ZY ~ AC
Which gives;
∠A ≅ ∠X, ∠B ≅ ∠Y, ∠C ≅ ∠Z