Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
sjnsjshdjahshabbxbabsbasjsjjsjs
Answer:
to attain stability atoms form covalent bonds
Answer:
Dry more clothes at the same time so that there is less room for electric forces.
Explanation:
Answer:
Increasing the surface area of a reactant increases the frequency of collisions and increases the reaction rate. Several smaller particles have more surface area than one large particle. The more surface area that is available for particles to collide, the faster the reaction will occur.
Explanation:
:)