Answer:
C. The reaction can be broken down and performed in steps
Explanation:
Hess's Law of Constant Heat Summation states that irrespective of the number of steps followed in a reaction, the total enthalpy change for the reaction is the sum of all enthalpy changes corresponding to all the steps in the overall reaction. The implication of this law is that the change of enthalpy in a chemical reaction is independent of the pathway between the initial and final states of the system.
To obtain MgO safely without exposing magnesium to flame, the reaction sequence shown in the image attached may be carried out. Since the enthalpy of the overall reaction is independent of the pathway between the initial and final states of the system, the sum of the enthalpy of each step yields the enthalpy of formation of MgO.
Answer:
2.00X10^5 x 20gNe/6.02x10^23=6.46x10^-18 but books answer is 797.
Explanation:
Converting mmHg to atm is solved by division.
Example: Convert 745.0 to atm.
Solution- divide the mmHg value by the 760.0 mmHg / atm.
745 mmHg over 760.0 mmHg/atm
atm value is 0.980263
Now, I am a medical student and we have never had to convert a BP (blood pressure) to atm from mmHg, only ever kPA. SO, I am going to take a guess here and say that when you do the work to solve this, you are going to convert the Systolic (upper #) which is the 145. You should get 0.190789 and then convert the Diastolic (lower #) which is 65. You should get 0.08552632.
So your fraction so to speak should read, 0.190789/0.08552632 or 0.190789 over 0.08552632
(Just to note that is way to low of a BP, although it is irrelevant) Best wishes and good luck. "Remember, never just look for the right answer, look for why it is the right answer!"
Answer:
see explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem
Molarity (m) is defined as the number of moles to solute (n) the volume (v) of the solution in liters is important to note that the molarity is defined as moles of solute per liter of solution not moles of solute per liter of solute.