1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
2 years ago
7

The burning of magnesium is a highly exothermic reaction. How many kilojoules of heat are released when 0. 75 mol of Mg burn in

an excess of O2?
2Mg(s) + O2(g) → 2MgO(s) + 1204 kJ
Chemistry
1 answer:
alexandr402 [8]2 years ago
4 0

Taking into account the definition of enthalpy of a chemical reaction, the quantity of heat released when 0.75 moles of Mg are burned is 451.5 kJ.

<h3>Enthalpy of a chemical reaction</h3>

The enthalpy of a chemical reaction is known as the heat absorbed or released in a chemical reaction when it occurs at constant pressure. That is, the heat of reaction is the energy that is released or absorbed when chemicals are transformed into a chemical reaction.

The enthalpy is an extensive property, that is, it depends on the amount of matter present.

<h3>Heat released in this case</h3>

In this case, the balanced reaction is:

2 Mg(s) + O₂ (g) → 2 MgO(s) + 1204 kJ

This equation indicates that when 2 moles of Mg reacts with 1 mole of O₂, 1204 kJ of heat is released.

When 0.75 moles of Mg are burned, then you can apply the following rule of three: if 2 moles of Mg releases 1204 kJ of heat, 0.75 moles of Mg releases how much heat?

heat=\frac{0.75 moles of Mgx1204 kJ}{2 moles of Mg}

<u><em>heat= 451.5 kJ</em></u>

Finally, the quantity of heat released when 0.75 moles of Mg are burned is 451.5 kJ.

Learn more about enthalpy of a chemical reaction:

<u>brainly.com/question/15355361</u>

<u>brainly.com/question/16982510</u>

<u>brainly.com/question/13813185</u>

<u>brainly.com/question/19521752</u>

You might be interested in
Which of the following is not an example of a molecule?
dybincka [34]

Answer:

He

Explanation:

A molecule is the smallest physical unit of a substance that can exist independently, consisting of 2 or more atoms chemically combined

He is one atom of Helium

4 0
3 years ago
What is the purpose of the subscripts, or small numbers, in a chemical formula?
dlinn [17]

Answer: To show the number of atoms present.

Explanation: As in CO² (Carbon dioxide), there is a small 2 next to the symbol "O" (oxygen) to explain that there are two oxygen atoms.

7 0
3 years ago
A sample of gas occupies a volume of 61.5 mL . As it expands, it does 130.1 J of work on its surroundings at a constant pressure
Lesechka [4]

Answer:

the final volume of the gas is V_2 = 1311.5 mL

Explanation:

Given that:

a sample gas has an initial volume of 61.5 mL

The workdone = 130.1 J

Pressure = 783 torr

The objective is to determine the final volume of the gas.

Since the process does 130.1 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.

Converting the external pressure to atm ; we have

External Pressure P_{ext}:

P_{ext} = 783 \ torr \times \dfrac{1 \ atm}{760 \ torr}

P_{ext} = 1.03 \ atm

The workdone W = P_{ext}V

The change in volume ΔV= \dfrac{W}{P_{ext}}

ΔV = \dfrac{130.1 \ J  \times \dfrac{1 \ L  \ atm}{ 101.325 \ J}  }{1.03 \ atm }

ΔV = \dfrac{1.28398717 }{1.03  }

ΔV = 1.25 L

ΔV = 1250 mL

Recall that the initial  volume = 61.5 mL

The change in volume V is \Delta V = V_2 -V_1

-  V_2= -  \Delta V  -V_1

multiply through by (-), we have:

V_2=   \Delta V+V_1

V_2 =  1250 mL + 61.5 mL

V_2 = 1311.5 mL

∴ the final volume of the gas is V_2 = 1311.5 mL

5 0
3 years ago
Which is an example of a bioresource used to build a home?
lutik1710 [3]
The answer should be A.
Hope this helps :-)
4 0
3 years ago
The reaction C4H8(g)⟶2C2H4(g) C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol.262 kJ/mol. At 600.0 K,600.0 K, the rate c
crimeas [40]

Answer : The rate constant at 785.0 K is, 1.45\times 10^{-2}s^{-1}

Explanation :

According to the Arrhenius equation,

K=A\times e^{\frac{-Ea}{RT}}

or,

\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]

where,

K_1 = rate constant at 600.0K = 6.1\times 10^{-8}s^{-1}

K_2 = rate constant at 785.0K = ?

Ea = activation energy for the reaction = 262 kJ/mole = 262000 J/mole

R = gas constant = 8.314 J/mole.K

T_1 = initial temperature = 600.0K

T_2 = final temperature = 785.0K

Now put all the given values in this formula, we get:

\log (\frac{K_2}{6.1\times 10^{-8}s^{-1}})=\frac{262000J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{785.0K}]

K_2=1.45\times 10^{-2}s^{-1}

Therefore, the rate constant at 785.0 K is, 1.45\times 10^{-2}s^{-1}

7 0
3 years ago
Other questions:
  • Which particles are found in an atom have charges
    12·2 answers
  • Suppose a 250 ml flask is filled with 1.3mol of O2 and 1.5 mol of NO. The following reaction becomes possible: The equilibrium c
    14·1 answer
  • 30,000 J of heat are added to 23.0 kg of steel to reach a final temperature of 140
    14·1 answer
  • 26. If a saturated solution of AgNO3 at 20°C contains 216 g AgNO3 per 100.0 g of water, what mass of water could
    9·1 answer
  • What is the role of neutrons in the nucleus of an atom?
    9·1 answer
  • compute the mass of caso4 that can be prepared by the reaction of 3.2900g of h2so4 with 3.1660g of caco3
    10·2 answers
  • Calculate the amount of heat required to convert 10.0 grams of ice at –20.°C to steam at 120.°C. (Sp. heat of H2O(s) = 2.09 J/g•
    8·1 answer
  • Sometimes a nuclide is referenced by the name of the element followed by the:______
    9·1 answer
  • 1.Explain why the reactivity of group 7 decreases as you move down the group. Try to use the sentence starters here: When group
    8·1 answer
  • What are three things that the elements Magnesium, Calcium and Barium have in common?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!