The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1
The density of the object is approximately 1.91 kg per m³.
42 kg is a measure of mass, and 22 m³ is a measure of volume. Knowing this, you can use the relationship

to solve for the object's density.
42 kg

22 m³

1.91 kg per m³.
A periodic wave transfers energy.
Answer:
Measuring cup and graduated cylinder
Explanation:
These tools measure the volume of liquid matter. Measuring cups are used frequently in cooking and provide measurements generally in ounces and grams. A graduated cylinder is used in laboratories and in research and allows for a greater degree of precision in measuring the volume.
Fx = Fcos21.9
Fx = 2.3N * cos21.9
Fx = 2.13N