Answer:
Reading a Graduated Cylinder
Place the graduated cylinder on a flat surface and view the height of the liquid in the cylinder with your eyes directly level with the liquid. The liquid will tend to curve downward. This curve is called the meniscus. Always read the measurement at the bottom of the meniscus.....
hope it helps....
Answer:
F =
.
Explanation:
Gravitational force between two objects of masses
kept at a distance r is given by the formula
F = 
Here ,
= 2m
= 
Thus , F = 
F =
.
According to law of conservation of energy,
<span>Energy can neither be constructed nor be destroyed but can be transformed from one form to another.
</span>
<span>At the highest point of the pendulum(point b), pendulum is associated with potential energy only and no kinetic energy.
</span><span>Therefore total energy at point b = potential energy = 711 J.... i
</span>
<span>At the bottom most point(point a), pendulum is associated only with kinetic energy and no potential energy.
</span>Therefore total energy at point a = kinetic energy ---- ii
<span>From i and ii,
</span>Kinetic energy = potential energy = 711 J.(Conserving energy)
Hence kinetic energy at the bottom most point is 711 J.
Hope this helps!!
Answer:
(a) 5.04 eV (B) 248.14 nm (c) 
Explanation:
We have given Wavelength of the light \lambda = 240 nm
According to plank's rule ,energy of light


Maximum KE of emitted electron i= 0.17 eV
Part( A) Using Einstien's equation
, here
is work function.
= 5.21 eV-0.17 eV = 5.04 eV
Part( B) We have to find cutoff wavelength



Part (C) In this part we have to find the cutoff frequency

Answer a would be correct since velocity is a vector and has a magnitude and a direction. In this case v₁ = - v₂.