Answer: 1. walking across a carpet and touching a metal door handle 2. pulling your hat off and having your hair stand on end.
Explanation
:)
Mary and her younger brother Alex decide to ride the carousel at the State Fair, Mary's and Alex's angular speed M and tangential speed vM is mathematically given as
Mary's and Alex's angular speed=1.43
Tangential speed mary=3.22 m/s
Tangential speed alex =2.260m/s
<h3>What is Mary's and Alex's angular
speed M and tangential speed vM?</h3>
Generally, the equation for angular speed is mathematically given as

w = 1.61 rev/see 3.9
Centripetal acc mary = v^2/r
Centripetal acc mary = w^2r
Centripetal acc mary = w^2x 2m
Centripetal acc. of Alex = w²x L.u
Therefore

Hence
tang. speed V=Wr
tang. speed of mary = 1.61x2 = 3.22 m/s
tang. speed of Alex: 1.61X1·4 =2.260m/s
Read more about Speed
brainly.com/question/4931057
#SPJ1
The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,
1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.
It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.
Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.
A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.
So, in analyzing the four choices given, we look for low P and high T.
A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.
B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.
We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.
Answer:
That when you leave the ice setting without foil, it melts slower. When you put the piece of ice in the foil it melts faster than just letting it set without foil. I really hope this helps.
Explanation: