Answer: Heat Energy
Explanation:
Heat is energy in its most disordered form. heat energy is the random jostling of molecules and is therefore not organized. As cells perform the chemical reactions that generate order within, some energy is inevitably lost in the form of heat. Because the cell is not an isolated system, the heat energy produced by the cell is quickly dispersed into the cell's surroundings where it increases the intensity of the thermal motions of nearby molecules. This increases the entropy of the cell's environment and keeps the cell from violating the second law of thermodynamics.
Answer:
its good no need to change anything :))
Answer:
The gravitational potential energy of the ball is 13.23 J.
Explanation:
Given;
mass of the ball, m = 0.5 kg
height of the shelf, h = 2.7 m
The gravitational potential energy is given by;
P.E = mgh
where;
m is mass of the ball
g is acceleration due to gravity = 9.8 m/s²
h is height of the ball
Substitute the givens and solve for gravitational potential energy;
PE = (0.5 x 9.8 x 2.7)
P.E = 13.23 J
Therefore, the gravitational potential energy of the ball is 13.23 J.
I just solved similar type of question. You can refer to my solution which I have attached
"Changing water salinity" is the most significant challenge for organisms that live in estuaries.
<u>Answer:</u> Option D
<u>Explanation:</u>
For estuaries, alkalinity levels are usually the maximum at a river's mouth where the ocean water falls for, and the minimum upstream where freshwater falls in. Although salinity vary throughout the tidal cycle. In estuaries, salinity rates usually decrease in spring as snow melt and rain raises the freshwater flow from streams and groundwater.
It influences the chemical environments within the estuary, especially the dissolved oxygen (DO) levels in the water. The level of oxygen that would get dissolved in water or its solubility get declined when the alkalinity rises.