Answer:
x sin nx = x cos nx
same as
theta / theta x (xsin (nx)) = sin (nx) + (nx) cos (nx)
Answer:
Circuit one will have more current than circuit two
Explanation:
I am assuming that you have to see which circuit has the greater current in this case. Well, this is the perfect example of Ohm's Law, which states the following -
V = IR,
where V = voltage / potential difference, I = current, and R = resistance
If one circuit has twice the voltage and half the resistance of the second circuit, as voltage is directly proportional to the resistance -
2V = I( 1 / 2R ),
4V = IR,
I = 4V / R
Whereas in the second circuit -
V = IR,
I = V / R
As you can note, voltage is directly proportional to the current ( I ) as well as the resistance. The only difference between the two formulas I = 4V / R, and I = V / R is the difference in the voltage. With the voltage being 4 times greater in the first circuit, and current is 4 times greater in the first circuit as well.
<u><em>Hence, circuit one will have more current than circuit two</em></u>
<span>Slowing an
object down is not a means of accelerating it. It actually decelerates the
motion of an object. Speeding it up, changing its direction and applying
balanced forces accelerate an object. In order for an object to accelerate, a force
must be applied. It follows Newton’s second law of motion where it states that
a body at rest remains at rest unless a force is acted upon it. When you move
an object, you are exerting a force onto it. By exerting a force on the object,
you are actually displacing it from its initial position. You cannot apply
force to the object without altering its position. Keep in mind that when you
exert work, you are exerting energy too. </span>
If it is a matter of which way you are going you could lean forward. It would help to put all the weight opposite of where you are falling.
Answer:
<h2>The current required winding is

</h2>
Explanation:
We can use the expression B=μ₀*n*I-------1 for the magnetic field that enters a coil and
n= N/L (number of turns per unit length)
Given data
The number of turns n= 1200 turns
length L= 0.42 m
magnetic field B= 1*10^-4 T
μ₀= 
Applying the equation B=μ₀*n*I
I= B/μ₀*n
I= B*L/μ₀*n

