It will be a virtual image that appears on the left side of the mirror
i hope this helps!
Answer:
The time interval of acceleration for the bus is 2.20 seconds
Explanation:
Acceleration is the rate of change of velocity
→ 
where a is the acceleration, v is the final velocity, u is the initial velocity
and t is the time
The given is:
The uniform acceleration = -4.1 m/s²
The bus slows from 9 m/s to 0 m/s
We need to find the time interval of acceleration for the bus
Lets use the rule above
→ a = -4.1 m/s² , v = 0 m/s , u = 9 m/s
→ 
Multiply both sides by t
→ -4.1 t = -9
Divide both sides by -4.1
∴ t = 2.20 seconds
<em>The time interval of acceleration for the bus is 2.20 seconds</em>
B
b/c newtons third law of motion is: "For every action, there is an equal and opposite reaction."
Answer: 0.08K
Explanation:
When temperature changes, the corresponding change in thermal energy of a gas is given by:
ΔE (thermal) = 3/2nRΔT
Defining the parameters:
ΔE (thermal) = Increase in thermal energy of the mono atomic gas = 1.0J
n = number of moles of the gas = 1.0mol
R = Ideal gas constant = 8.314J/mol/K
ΔT = change in temperature. This is what we need to find.
Rearranging the equation to make ΔT subject of the formula,
ΔT= 2 x ΔE (thermal) / (3 x n x R)
Therefore, ΔT = 2 x 1.0J / (3 x 1.0mol x 8.314J/mol/K)
ΔT = 2.0J / 24.942J/K
ΔT = 0.0802K
ΔT = 0.08K
The temperature change of 1.0mol of a monoatomic gas if its thermal energy is increased by 1.0J is 0.08K.