The subscript in a chemical formula is the number written next to the element at the bottom part. For example, the chemical formula of water is H₂O. The subscript of H is 2, while the subscript of O is 1. The subscript represents the number of a certain element in one particle of the compound. So, if you change the subscript, you also change the number of a certain element per compound. In other words, you change the ratio.
Answer: Option (C) is the correct answer.
Explanation:
Molecules in a liquid have less force of attraction as compared to solids. But liquid molecules have more force of attraction as compared to gases.
Since molecules of a gas are held together by weak Vander waal forces, therefore, they expand to fill the container whereas molecules in a liquid are not expanded in a container like gases because of more force of attraction within molecules of liquids as compared to gases.
Hence, a liquid can take the shape of container in which it is kept.
Thus, we can conclude that out of the given options, a liquid change to take the shape of its container but NOT expand to fill the container itself because the particles of a liquid are held together loosely enough to flow, but not so loose that they expand.
A
"The heat from the hot chocolate will travel to the spoon"
Answer:
yeah
Explanation:
well, probably. they kicked me out of math class because I put a live chicken in the classroom and it pooped everywhere, so I had to clean it up and bring it back where I found it (which is the side of the road.)
Answer:
88,7 mL of solution
Explanation:
Molarity (Represented as M) is an unit of chemical concentration that is defined as the ratio between moles of solute per liters of solution, that is:
Molarity = moles of solute / Liters of solution
If molarity of KCN solution is 0,0820M and moles of KCN are 7,27x10⁻³ moles:
0,0820M = 7,27x10⁻³ moles / Liters of solution
Liters of solution = 0,0887L = <em>88,7 mL of solution</em>
I hope it helps!