Answer : We can produce 125.7 g of
.
Explanation : The reaction will be

The molecular mass of
is 64.1 g/mol
and molecular mass of
is 34.1 g/mol
For every mole of
we would need twice of
moles, so for every 3 moles of
we need 16 moles of 
Now, we can calculate number of moles
2.61 X (3/16) = 0.49 moles
Here, the molecular mass of
is 256.8 g
multiplying it with the number of 0.49 moles we get, 256.8 X 0.49 = 125.7 g of
.
Hence, 125.7 g of
will be produced.
In resonance structures, the chemical connectivity in the molecule is same but the distribution of electrons are different around the structure. They are created by moving electrons in double or triple bonds, and not atoms.
Phenol,
and methanol,
both are alcohols that contain an
group attached to carbon atom.
Due to loss of 1
from phenol, it forms phenoxide anion and due to presence of double bond in the benzene ring the negative charge on the oxygen atom (which represents electrons) will resonate with double bonds of benzene ring as shown in the image. The resonance-stabilized phenoxide ion is more stable. Whereas when methanol lose 1
it forms methoxide anion and there are no such electrons present in the structure of methoxide that will result in the movement of electron. Since, due to resonance-stabilized phenoxide ion is more stable than methoxide ion, so it is a stronger acid.
The structures of the anions resulting from loss of 1
from phenol and methanol is shown in the image.
<span>These hydrocarbons are many and this depends on the phase diagram of the substance. In a phase diagram, the phase
can be determined by looking at a certain temperature and pressure. For this case, at a temperature of 20 degrees Celsius and at 1 atmosphere.</span>
Well, clearly the calculated value for the number of hydrating water molecules would increase above its true level, because the total weight loss would be greater than expected. This is of course undesirable, but may usually be avoided by careful application of the experimental procedures. The signs to look for include
<span>(a) loss of water of hydration usually occurs at a considerably lower temperature than decomposition of the salt, because the water molecules are not strongly bonded in the hydrated complex. Dehydration typically occurs in a broad range of temperatures, typically from 50°C to around 200°C, whereas decomposition of the dehydrated salt generally takes place at temperatures over 200°C and in some case over 1000°C. So dehydration should be performed with care - avoid over-heating the sample in order to ensure that all the water has been driven off. </span>
<span>(b) dehydration often results in a change of appearance of the sample, particularly the colour and particle size of crystalline hydrates. However, decomposition may be accompanied by an additional change at higher temperatures, which gives a warning of its occurrence. </span>
<span>(c) if it is suspected that decomposition is occurring, or that dehydration is not complete, exploratory runs of varying duration at a given temperature may be carried out. There are two criteria to judge the effectiveness of the procedure </span>
<span>(i) the weight of the sample decreases to a constant stable value: this is a sign that dehydration is complete and decomposition - which is usually a much slower process - is not occurring. </span>
<span>(ii) the calculated number of molecules of water lost should take an integer value. If it differs by more than, say, 0.1 from an integer than it is probable that one of these two undesirable effects is present. Some hydrates lose water in steps through intermediate compounds with a lower level of hydration. These may provide plateaus where the weight loss is stable but dehydration is not complete. These will, in general, not provide an integer value for the number of water molecules present (because the calculation is based on the assumption that the residual sample is completely dehydrated salt).</span>
Answer:
condensation:The act or process of condensing or of being condensed pressureA pressing; a force applied to a surface.
temperature The state or condition of being tempered or moderated.
n: