1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tankabanditka [31]
3 years ago
7

Imagine that a bowling ball needs to be lifted 1.5 meters, and its gravitational potential energy is 90 joules. How much does th

e bowling ball weigh?
Physics
1 answer:
Vikki [24]3 years ago
8 0

Answer: 6.12 kg

Explanation:

Since Mass of ball = ? (let the unknown value be Z)

Acceleration due to gravity, g= 9.8m/s^2

Height, h = 1.5 metres

Gravitational potential energy GPE = 90J

Gravitational potential energy depends on the weight of the ball, the action of gravity and height.

Thus, GPE = Mass m x Acceleration due to gravity g x Height h

90J = Z x 9.8m/s^2 x 1.5m

90 = Z x 14.7

Z = 90/14.7

Z = 6.12 kg

Thus, the bowling ball weigh 6.12 kilograms

You might be interested in
Geocentric theory:
grandymaker [24]
I believe d all of the above
3 0
3 years ago
(a) Calculate the buoyant force on a 2.00-L helium balloon.
iragen [17]

Answer:

0.0239364 N

0.0057879 N

Explanation:

\rho = Density of the gas

g = Acceleration due to gravity = 9.81 m/s²

V = Volume

Mass of rubber = 1.5 g

Buoyant force is given by

F_b=\rho gV\\\Rightarrow F_b=1.22\times 9.81\times 2\times 10^{-3}\\\Rightarrow F_b=0.0239364\ N

The buoyant force is 0.0239364 N

Net vertical force is given by

F_n=F_b-W_{He}-W_{r}\\\Rightarrow F_n=0.0239364-0.175\times 2\times 10^{-3}\times 9.81-1.5\times 10^{-3}\times 9.81\\\Rightarrow F_n=0.0057879\ N

The net vertical force is 0.0057879 N

6 0
3 years ago
For a top player, a tennis ball may leave the racket on the serve with a speed of 55 m/s (about 120 mi/h). If the ball has a mas
inn [45]

Answer:

Yes is large enough

Explanation:

We need to apply the second Newton's Law to find the solution.

We know that,

F= ma

And we know as well that

a= \frac{v}{t}

Replacing the aceleration value in the equation force we have,

F= \frac{mv}{t}

Substituting our values we have,

F= \frac{(0.060)(55)}{4*10^{-3}}

F=825N

The weight of the person is then,

W = mg

W = (60)(9.8) = 558N

<em>We can conclude that force on the ball is large to lift the ball</em>

6 0
3 years ago
Within the theory of G relativity what, exactly, is meant by " the speed of light WITHIN A VACUUM" ? &amp; what does that have t
Ber [7]
The speed of light "within a vacuum" refers to the speed of electromagnetic radiation propagating in empty space, in the complete absence of matter.  This is an important distinction because light travels slower in material media and the theory of relativity is concerned with the speed only in vacuum.  In fact, the theory of relativity and the "speed of light" actually have nothing to do with light at all.  The theory deals primarily with the relation between space and time and weaves them into an overarching structure called spacetime.  So where does the "speed of light" fit into this?  It turns out that in order to talk about space and time as different components of the same thing (spacetime) they must have the same units.  That is, to get space (meters) and time (seconds) into similar units, there has to be a conversion factor.  This turns out to be a velocity.  Note that multiplying time by a velocity gives a unit conversion of
seconds \times  \frac{meters}{seconds} =meters
This is why we can talk about lightyears.  It's not a unit of time, but distance light travels in a year.  We are now free to define distance as a unit of time because we have a way to convert them.  
As it turns out light is not special in that it gets to travel faster than anything else.  Firstly, other things travel that fast too (gravity and information to name two).  But NO events or information can travel faster than this.  Not because they are not allowed to beat light to the finish line---remember my claim that light has nothing to do with it.  It's because this speed (called "c") converts space and time.  A speed greater than c isn't unobtainable---it simply does not exist.  Period.  Just like I can't travel 10 meters without actually moving 10 meters, I cannot travel 10 meters without also "traveling" at least about 33 nanoseconds (about the time it takes light to get 10 meters)  There is simply no way to get there in less time, anymore than there is a way to walk 10 meters by only walking 5.  
We don't see this in our daily life because it is not obvious that space and time are intertwined this way.  This is a result of our lives spent at such slow speeds relative to the things around us.
This is the fundamental part to the Special Theory of Relativity (what you called the "FIRST" part of the theory)  Here is where Einstein laid out the idea of spacetime and the idea that events (information) itself propagates at a fixed speed that, unlike light, does not slow down in any medium.  The idea that what is happening "now" for you is not the same thing as what is "now" for distant observers or observers that are moving relative to you.  It's also where he proposed of a conversion factor between space and time, which turned out to be the speed of light in vacuum.
3 0
3 years ago
A horizontal force of magnitude 30.2 N pushes a block of mass 3.50 kg across a floor where the coefficient of kinetic friction i
marshall27 [118]

Answer:

A) 89.39 J

B) 30.39J

C) 23.8 J

Explanation:

We are given;

F = 30.2N

m = 3.5 kg

μ_k = 0.646

d = 2.96m

ΔEth (Block) = 35.2J

A) Work done by the applied force on the block-floor system is given as;

W = F•d

Thus, W = 30.2 x 2.96 = 89.39 J

B) Total thermal energy dissipated by the whole system which includes the floor and the block is given as;

ΔEth = μ_k•mgd

Thus, ΔEth = 0.646 x 3.5 x 9.8 x 2.96 = 65.59J

Now, we are given the thermal energy of the block which is ΔEth (Block) = 35.2J.

Thus,

ΔEth = ΔEth (Block) + ΔEth (floor)

Thus,

ΔEth (floor) = ΔEth - ΔEth (Block)

ΔEth (floor) = 65.59J - 35.2J = 30.39J

C) The total work done is considered as the sum of the thermal energy dissipated as heat and the kinetic energy of the block. Thus;

W = K + ΔEth

Therefore;

K = W - ΔEth

K = 89.39 - 65.59 = 23.8J

3 0
3 years ago
Other questions:
  • What effect does observing a substance's physical properties have on the substance
    13·1 answer
  • Which of the following are properties of acids?
    9·2 answers
  • Tim jogs a distance of 7.2 km to the west. Then he turns south and jogs 1.4 km. West is the resultant if Tim's jog back to the b
    6·1 answer
  • A sensor is used to monitor the performance of a nuclear reactor. The sensor accu-rately reflects the state of the reactor with
    13·1 answer
  • Question number 7, how to calculate the equivalent resistance of the combination of resistors.
    8·1 answer
  • The energy from light is used by plants to oxidize which molecule?
    8·1 answer
  • (III) An engineer is designing a spring to be placed at the bottom of an elevator shaft. If the elevator cable breaks when the e
    8·2 answers
  • You have just landed on Planet X. You take out a ball of mass 101 g , release it from rest from a height of 16.0 m and measure t
    6·1 answer
  • A 1.8 kg uniform rod with a length of 90 cm is attached at one end to a frictionless pivot. It is free to rotate about the pivot
    6·1 answer
  • The___ of a mirror's surface determines the type of image it forms.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!