The correct answer for the question that is being presented above is this one: "Schmidt-Cassegrain focus." A focal arrangement that has a thin lens that the light passes through before traveling down the tube to the objective mirror is a Schmidt-Cassegrain focus.
Here are the following choices:
a. Cassegrain focus
b. Newtonian focus
c. Schmidt-Cassegrain focus
<span>d. Schmidt focus</span>
First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed

, and an accelerated motion on the y-axis, with initial speed

and acceleration

:


where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).
To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring

Therefore:

which has two solutions:

is the time of the beginning of the motion,

is the time at which the projectile hits the ground.
Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point:
Answer:
the answer is B
Explanation:
wave x has the highest hertz making it the answer
Resistance = voltage / current.
That's. 120v / 14A = 8.57 ohms.
By the way, voltage doesn't "run through" anything. Current does. That would be the 14 Amps.
Answer:
Jackson 2: Smart 3: Ahmed
Explanation:
square + circle = egg
oops, wrong guy