Power in a wire where current is flowing can be calculated from the product of the square of the current and the resistance. Resistance is equal to the product of resistivity and length divided by the area of the wire. We do as follows:
Resistance = 2.44 × 10-8 ( 0.11) / (π)(0.0009)^2 = 1.055x10^-3 <span>Ω
P = I^2R = .170^2 (</span>1.055x10^-3 ) = 3.048x10^-5 W
There's little gravity so your weight would change but not your mass
Answer:
a) i₈ = 0.5 i₄, b) i₁₀ = 0.3 i₃, i₁₀ = 0.8 i₈
Explanation:
For this exercise we use ohm's law
V = i R
i = V / R
we assume that the applied voltage is the same in all cases
let's find the current for each resistance
R = 4 Ω
i₄ = V / 4
R = 8 Ω
i₈ = V / 8
we look for the relationship between these two currents
i₈ /i₄ = 4/8 = ½
i₈ = 0.5 i₄
R = 3 Ω
i₃ = V3
R = 10 Ω
i₁₀ = V / 10
we look for relationships
i₁₀ / 1₃ = 3/10
i₁₀ = 0.3 i₃
i₁₀ / 1₈ = 8/10
i₁₀ = 0.8 i₈
Answer:
a. 45 N. / b. 0.08 m/s^2. / c. 102 N
F = ma
F = 15(3)
F = 45 newtons
F/m = a
20/250 = a
0.08 m/s^2 = a
R = ma
R =1.5(68)
102 N
Answer:
The difference between ice and steam in Celsius (Centigrade) is 100 deg.
So the difference between and 4 cm and 24 cm of the thread corresponds to 100 deg C.
So 8 cm is 4 cm greater than the ice point
4 cm / 20 cm = 1/5 since the steam point and the ice point are 20 cm apart
Then 1/5 * 100 deg C = 20 deg C the requested temperature