Answer: In this lab we wanted to know how motion can be described. So the hypothesis is if the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car will have a greater acceleration. My prediction is that cars travel faster on higher tracts. So the heighten the track was intentionally manipulated. So it is the independent variable the speed of the car is the dependent variable. The speed at the first quarter checkpoint is 1.09 m/s. The speed at the second quarter checkpoint is 1.95 m/s. The speed at the third quarter checkpoint is 2.373.36 m/s. The speed at the finish line is 2.803.00 m/s. The average speed increases as the height increases.
The cars on the higher track travel farther than the cars on the lower track, in the same time.
This means that the cars on the higher track have a greater average speed than those on the lower track. This is demonstrated by the
slope of the higher track line being greater than the slope of the lower track line.
Explanation: put it in notes then send it to files to compress it to submit it.
The answer is wheel and axle
Answer:
(a) A. Uniform line of charge and B. Uniformly charged sphere
(b) To three digits of precision:
λ = 1.50 * 10^-10 C/m
p = 2.81 * 10^-4 C/m^3
Explanation:
what causes a star to shine brightly:
by squeezing atoms together in its core
Answer:
0.20
Explanation:
The box is moving at constant velocity, which means that its acceleration is zero; so, the net force acting on the box is zero as well.
There are two forces acting in the horizontal direction:
- The pushing force: F = 99 N, forward
- The frictional force:
, backward, with
coefficient of kinetic friction
m = 50 kg mass of the box
g = 9.8 m/s^2 gravitational acceleration
The net force must be zero, so we have

which we can solve to find the coefficient of kinetic friction:
