Answer:
<u>The correct answer is 0.556 Watts</u>
Explanation:
The computer monitor uses 200 Watts of power in an hour, that is the standard measure.
If we want to know, how much energy the computer monitor uses in one second, we will have to divide both sides of the equation into 3,600.
1 hour = 60 minutes = 3,600 seconds (60 x 60)
Energy per second = 200/3600
Energy per second = 0.0556 Watts
Therefore to calculate how much energy is used in 10 seconds, we do this:
Energy per second x 10
<u>0.0556 x 10 = 0.556 Watts</u>
<u>The computer monitor uses 0.556 Watts in 10 seconds</u>
Her weight = (mass) · (gravity) = (50kg) · (9.8 m/s²)
Work = (weight) · (height) = (50kg) · (9.8 m/s²) · (6 m)
Power = (work) / (time) = (50kg) · (9.8 m/s²) · (6 m) / (15 s)
Power = (50 · 9.8 · 6 / 15) · (kg · m² / s³)
Power = 196 (kg · m / s²) · (m) / s
Power = 196 Newton-meter/second
<em>Power = 196 watts</em>
AS
work done =W = F.d = F d cosФ (Ф is angle between force F and displacement d) If a body/object is moving on a smooth surface (friction-less surface ) .There is no force acting on that body. F=0 so W=FdcosФ= (0)dcosФ ⇒ W=0
Now if a body is facing some amount of force but under the action of force there is no displacement covered. d=0 so W =FdcosФ= F(0)cosФ ⇒W=0
example: A person is applying a force on rigid wall but wall remains at rest there is no displacement occurs in wall.
The third term upon which work done dependent is angle between force and displacement i.e Ф. If Ф=90° then W= FdcosФ= Fdcos90⇒ W=0 ( as cos 90°=0)
if we are walking on a perfectly smooth ground which has no friction our force would simply cancel out the force reverted by the ground and we would fall.
We need it to help push out feet off the ground
Hope those helps :)