Answer:
Distance between centre of Earth and centre of Moon is 3.85 x 10⁸ m
Explanation:
The attractive force experienced by two mass objects is known as Gravitational force.
The gravitational force is determine by the relation:
....(1)
According to the problem,
Mass of Moon, m₁ = 7.35 x 10²² kg
Mass of Earth, m₂ = 5.97 x 10²⁴ kg
Gravitational force experienced by them, F = 1.98 x 10²⁰ N
Universal gravitational constant, G = 6.67 x 10⁻¹¹ Nm²kg⁻²
Substitute these values in equation (1).



d = 3.85 x 10⁸ m
Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is

where
u = 21.5 m/s is the initial speed
is the angle
Substituting,

The vertical position of the ball at time t is given by

where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

In other words a infinitesimal segment dV caries the charge
<span>dQ = ρ dV </span>
<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>
<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>
<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
Answer:
Propels in the opposite direction
Explanation:
Answer:
The statement is true.
Both gravity and centrifugal force act on the Moon which causes it get pulled towards Earth (gravity) and get "flung away" so it doesn't hit us (centrifugal force).