Answer:
may be upside down alphabet :"T"
Explanation:
To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
Answer:
Acceleration (a) = 40 m/s²
Explanation:
Given:
Initial velocity (u) = 6 m/s
Final velocity (v) = 4.4 m/s
Time taken (t) = 0.04sec
Find:
Acceleration (a) = ?
Computation:
We know that,
⇒ v = u + at
⇒ a = (v - u) / t
⇒ Acceleration (a) = (4.4 - 6) / 0.04
⇒ Acceleration (a) = (-1.6) / 0.04
Acceleration (a) = 40 m/s²
Answer:
The magnitude of
is 4 V and phase of input voltage is zero
Explanation:
Given:
Output voltage 
Resistance
kΩ
Voltage gain 
For finding feedback resistance we use gain equation
Gain equation for non inverting op-amp is given by,


≅ 10 kΩ
For finding input voltage we use,


V
The Phase of
is zero because output voltage phase is 360°
Therefore, the magnitude of
is 4 V and phase of input voltage is zero
A because it makes more sense