1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
2 years ago
6

Evaluate each absolute value |-3.7|

Mathematics
2 answers:
gizmo_the_mogwai [7]2 years ago
4 0
Positive 3.7

The only time absolute is negative is if the negative is outside absolute value
|-5|=5
|5|=5
-|5|=-5
Zigmanuir [339]2 years ago
3 0

Answer:

3.7 is your answer

Step-by-step explanation:

because an absolute value is the opposite of an number like -4.8 is 4.8

You might be interested in
A boat travels 438 km in 8 hours (with a constant speed). How far can it travel in 5 hours (with the same speed
Gre4nikov [31]
The distance that the boat can travel in one hour
=438km/8h
=54.75km/h
The boat can travel in 5 hours
=(54.75*5)km
=273.75km
3 0
2 years ago
What is the average of all interfere from 11 to 35​
diamong [38]

Answer:

I'm not so sure what you mean from your question but if we discussed the Average of 11 and 35( positive integers), we would say that it's 23<u>.</u>

8 0
2 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
Simplify the expression, Please help!!
Serhud [2]
For the first one it would be C.
3 0
2 years ago
Hey guys I really need help. You don't have to give the answer I just really need an explanation as to how to find the roots wit
garik1379 [7]

Answer:

x=9 is the answer

Step-by-step explanation:

you do 2^2 then 2-2 you add those two answer together than subtract from 15

6 0
3 years ago
Read 2 more answers
Other questions:
  • George has $23 to spend on art supplies. He wants to buy markers, paper, and glue. If the total cost of the markers and paper is
    9·1 answer
  • F= 9/5c + 32 <br>solve for C​
    8·1 answer
  • Oh my god someone please tell me
    9·2 answers
  • 3x-y+2=0 in rectangle form
    8·1 answer
  • Does 4( − 11) = 15 − 4 have a solution , infinite or none?
    14·1 answer
  • A bag contains five ping-pong balls numbered 1 to 5. Two balls are removed to form a two digit number. The smallest possible num
    6·1 answer
  • Question 18 of 40<br> 5<br> Simplify (4-2)5
    7·1 answer
  • Find the solutions to x2 = 20.
    12·2 answers
  • Solve m4=21<br> m=<br><br> BEST ANSWER GETS BRAINLIEST
    8·1 answer
  • What is the scale factor from figure a to figure b
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!