1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alinara [238K]
2 years ago
10

Help please It’s kinda urgent

Physics
1 answer:
user100 [1]2 years ago
4 0

Answer:

a = - 50 [m/s²]

Explanation:

To solve this problem we simply have to replace the values supplied in the given equation.

Vf = final velocity = 0.5 [m/s]

Vi = initial velocity = 10 [m/s]

s = distance = 100 [m]

a = acceleration [m/s²]

Now replacing we have:

(0.5)^{2}-(10)^{2} = 2*a*(100)\\0.25-10000=200*a\\200*a=-9999.75\\a =-50 [m/s^{2} ]

The negative sign of acceleration means that the ship slows down its velocity in order to land.

You might be interested in
Newton's first law of motion states that an object will keep a constant speed and direction unless acted upon by an unbalanced f
trasher [3.6K]

Answer:

The unbalanced force that caused the ball to stop was friction

Explanation:

As Newton's second law states, the acceleration of an object is proportional to the net force applied on the object:

F=ma

therefore, in order to move at constant speed, an object should have a net force of zero (balanced forces) acting on it.

In this case, the ball slows down and eventually comes to a stop: it means that the ball is decelerating, so there are unbalanced forces (net force different from zero) acting on it. The unbalanced force acting on the ball is the friction: friction is a force against the motion of the object, which is due to the contact between the surface of the ball and the surface of the street, and this force is responsible for slowing down the ball.

3 0
3 years ago
Read 2 more answers
If you walk 30 meters forwards, and then turn around and walk 25 meters backwards, what is the distance that you walked? What di
xeze [42]

Given :

Walk in forward direction is 30 m .

Walk in backward direction is 25 m .

To Find :

The distance and displacement .

Solution :

We know , distance is total distance covered and displacement is distance between final and initial position .

So , distance travelled is :

D = 30 + 25 m = 55 m .

Now , we first move 30 m in forward direction and then 25 m in backward direction .

So , displacement is :

D = 30 - 25 m = 5 m .

Therefore , distance and displacement covered is 55 m and 5 m respectively .

Hence , this is the required solution .

5 0
3 years ago
A charge of 8.4 × 10–4 C moves at an angle of 35° to a magnetic field that has a field strength of 6.7 × 10–3 T.
sineoko [7]

Answer:10842.33m/s

Explanation:

F=qvBsine

V=f/(qBsine)

V=(3.5×10^-2)÷(8.4×10^-4×6.7×10^-3×sin35)

V=10842.33m/s

5 0
3 years ago
An ideal spring hangs from the ceiling. A 1.25-kg mass is hung from the spring. After all vibrations have died away, the spring
ch4aika [34]

The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

\texttt{ }

<h3>Further explanation</h3>

Let's recall Elastic Potential Energy formula as follows:

\boxed{E_p = \frac{1}{2}k x^2}

where:

<em>Ep = elastic potential energy ( J )</em>

<em>k = spring constant ( N/m )</em>

<em>x = spring extension ( compression ) ( m )</em>

Let us now tackle the problem!

\texttt{ }

<u>Given:</u>

mass of object = m = 1.25 kg

initial extension = x = 0.0275 m

final extension = x' = 0.0735 - 0.0275 = 0.0460 m

<u>Asked:</u>

kinetic energy = Ek = ?

<u>Solution:</u>

<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>

F = k x

mg = k x

k = mg \div x

k = 1.25(9.8) \div 0.0275

k = 445 \frac{5}{11} \texttt{ N/m}

\texttt{ }

<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>

Ep_1 + Ek_1 = Ep_2 + Ek_2

\frac{1}{2}k (x')^2 + mgh + 0 = \frac{1}{2}k x^2 + Ek

Ek = \frac{1}{2}k (x')^2 + mgh - \frac{1}{2}k x^2

Ek = \frac{1}{2}k ( (x')^2 - x^2 ) + mgh

Ek = \frac{1}{2}(445 \frac{5}{11}) ( 0.0460^2 - 0.0275^2 ) + 1.25(9.8)(0.0735)

\boxed {Ek \approx 1.20 \texttt{ J}}

\texttt{ }

<h3>Learn more</h3>
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Young Modulus : brainly.com/question/9202964
  • Simple Harmonic Motion : brainly.com/question/12069840

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Elasticity

8 0
3 years ago
Read 2 more answers
What is the ability to react with air
Bond [772]
Reactivity is the answer
3 0
3 years ago
Read 2 more answers
Other questions:
  • Electrons in a particle beam each have a kinetic energy of 4.0 × 10 −17 J. What is the magnitude of the electric field that will
    14·2 answers
  • 50 g of liquid Y at 10 Celcius and 200 g of liquid Y at 40Celcius are mixed. Final temperature of the mixture is measured as 15
    12·1 answer
  • Which of the following objects have gravitational potential energy?
    12·2 answers
  • Are my answers correct?
    7·1 answer
  • During a baseball game, a baseball is struck at ground level by a batter. The ball leaves the baseball bat with an initial veloc
    6·1 answer
  • Technician A says that low pressure smoke installed in the fuel system can be used to check for leaks. Technicians B says that n
    15·1 answer
  • Which describes Einstein’s second postulate about the special theory of relativity? The speed of light in a vacuum is constant,
    12·2 answers
  • Which line represents a stationary object?<br> Position<br> Time
    7·1 answer
  • For the following, determine the final volume in ml (V2) of a gas when it is heated to 373K (T2) when it's starting temperature
    13·1 answer
  • Meteorologists are interested in the relationship between minimum pressure and maximum wind speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!