<u>Answer
</u>
A. 1 and 2
<u>Explanation
</u>
At point 1 we have the highest potential energy and the kinetic energy is zero.
At 2 the potential energy is minimum and the kinetic energy is maximum.
The law of conservation of energy says that energy cannot be created nor destroyed. So, the change in P.E = Change in K.E.
P.E = height × gravity × mass. The height referred here is the perpendicular height. Gravity and mass are constant in this case.
From the diagram it can be seen clearly that the vertical height from 2 to 1 is much greater than from 4 to 3.
This shows that the change in P.E is greater between 1 and 2 and so is kinetic energy.
Answer:
10 seconds.
Explanation:
We can use a kinematic equation where we know the final velocity, initial velocity, acceleration, and need to determine the time <em>t: </em>
<em /><em />
<em />
The initial velocit is 30 m/s, the final velocity is 0 m/s (as we stopped), and the acceleration is -3 m/s².
Substitute and solve for <em>t: </em>
<em /><em />
<em />
Hence, it will take the car 10 seconds to come to a stop.
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Answer:
31677.2 lb
Explanation:
mass of hammer (m) = 3.7 lb
initial velocity (u) = 5.8 ft/s
final velocity (v) = 0
time (t) = 0.00068 s
acceleration due to gravity (g) 32 ft/s^{2}
force = m x ( a + g )
where
- m is the mass = 3.7 lb
- g is the acceleration due to gravity = 32 ft/s^{2}
- a is the acceleration of the hammer
from v = u + at
a = (v-u)/ t
a = (0-5.8)/0.00068 = -8529.4 ( the negative sign showa the its decelerating)
we can substitute all required values into force= m x (a+g)
force = 3.7 x (8529.4 + 32) = 31677.2 lb
Answer:
In order to measure the amount of solution added in or drained out, the burette must be observed at eye level straight to the bottom of the meniscus. The liquid in the burette should be completely free of bubbles to ensure accurate measurements.