I think it is D
Hope my answer help you?
Answer:
It remains the same
Explanation:
It remains the same. This is because the number of protons doesn't change and the number of protons determines the atomic number.
Answer:
After 4 s of passing through the intersection, the train travels with 57.6 m/s
Solution:
As per the question:
Suppose the distance to the south of the crossing watching the east bound train be x = 70 m
Also, the east bound travels as a function of time and can be given as:
y(t) = 60t
Now,
To calculate the speed, z(t) of the train as it passes through the intersection:
Since, the road cross at right angles, thus by Pythagoras theorem:


Now, differentiate the above eqn w.r.t 't':


For t = 4 s:

There is one mistake in the question.The Correct question is here
A cat falls from a tree (with zero initial velocity) at time t = 0. How far does the cat fall between t = 1/2 and t = 1 s? Use Galileo's formula v(t) = −9.8t m/s.
Answer:
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Explanation:
Given data
time=1/2 sec to 1 sec
v(t)=-9.8t m/s
To find
Distance
Solution
As the acceleration as first derivative of velocity with respect to time
So
acceleration(-g)= dv/dt
Solve it
dv = a dt
dv = -g dt
v - v₀ = -gt
v= dy/dt
dy = v dt
dy = ( v₀ - gt ) dt
y(1s) - y(1/2s) = ( v₀ ) ( 1 - 1/2 ) - ( g/2 )[ ( t1)² -( t1/2s )² ]
y(1s) - y(1/2s) = ( - 9.8/2 ) [ ( 1 )² - ( 1/2 )² ]
y1s - y1/2s = ( - 4.9 m/s² ) ( 3/4 s² )
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Answer:
gₓ = 23.1 m/s²
Explanation:
The weight of an object is on the surface of earth is given by the following formula:

where,
W = Weight of the object on surface of earth
m = mass of object
g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth
Similarly, the weight of the object on Jupiter will be given as:

where,
Wₓ = Weight of the object on surface of Jupiter = 34.665 N
m = mass of object = 1.5 kg
gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?
Therefore,


<u>gₓ = 23.1 m/s²</u>