1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alinara [238K]
3 years ago
10

A police officer in hot pursuit of a criminal drives her car through an unbanked circular (horizontal) turn of radius 300 m at a

constant speed of 22.2 m/s. Her mass is 55.0 kg. To the nearest degree, what is the angle (relative to vertical) of the net force of the car seat on the officer?

Physics
1 answer:
Mamont248 [21]3 years ago
3 0

Answer:

The angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is <u>10°.</u>

Explanation:

Given:

Mass of the driver is, m=55\ kg

Radius of circular turn is, R=300\ m

Linear speed of the car is, v=22.2\ m/s

Since, the car makes a circular turn, the driver experiences a centripetal force radially inward towards the center of the circular turn. Also, the driver experiences a downward force due to her weight. Therefore, two forces act on the driver which are at right angles to each other.

The forces are:

1. Weight = mg=55\times 9.8=539\ N

2. Centripetal force, 'F', which is given as:

F=\frac{mv^2}{R}\\F=\frac{55\times (22.2)^2}{300}\\\\F=\frac{55\times 492.84}{300}\\\\F=\frac{27106.2}{300}=90.354\ N

Now, the angle of the net force acting on the driver with respect to the vertical is given by the tan ratio of the centripetal force (Horizontal force) and the weight (Vertical force) and is shown in the triangle below. Thus,

\tan \theta=\frac{90.354}{539}\\\tan \theta=0.1676\\\theta=\tan^{-1}(0.1676)=9.52\approx 10°

Therefore, the angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is 10°.

You might be interested in
As the object's particles move faster, the thermal energy increases, causing the _________ to also increase. *
ryzh [129]
Temperature that will be my answer number 1
7 0
3 years ago
Read 2 more answers
You are holding a positive charge and there are positive charges of equal magnitude 1 mm to your north and 1 mm to your east. Wh
lara [203]

If I hold a positive charge in my hand and there are positive charges of equal magnitude 1 mm to your north and 1 mm to your east then the direction of the force on the charge I am holding is towards the north-east direction.

Reasoning:

It is given that there is a positive charge in my hand. There are two more positive charges with the same magnitude. One is 1 mm far towards the east, and the other one is 1 mm far towards the north. It is required to find the direction of the force acting on the charge in my hand.

Let the magnitude of the charge in my hand is Q, and the magnitude of the other charges is q.

Thus the electric force applied on the charge in my hand due to each other is,

F=\frac{kQq}{r^2}

Here k is the Coulomb constant, and r is the distance between the charges.

It is also known that the force on a positive charge due to another positive charge is acted outwards.

Thus, the force on the charge due to the charge on the east is,

\vec{F_1}=\frac{kQq}{( 10^{-3}\text{ m})^2}\hat{i}

And the force on the charge due to the charge on the north is,

\vec{F_2}=\frac{kQq}{( 10^{-3}\text{ m})^2}\hat{j}

As the forces are equal in magnitude and one is perpendicular to the other, thus the net force will be acted at an angle of 45^\circ from the north or from the north direction.

Thus the net force is acting in the north-east direction.

Learn more about the direction of the force here,

brainly.com/question/2037071

#SPJ4

3 0
2 years ago
Correct shape will reduce fluid friction.<br> True <br> False
AURORKA [14]
I believe that is true.

hope this helps!
8 0
3 years ago
Read 2 more answers
A 0.5 kg mass on a spring undergoes simple harmonic motion with a total mechanical energy of 12 J. If the oscillation amplitude
Darya [45]

Answer:

The frequency of the oscillation is 2.45 Hz.

Explanation:

Given;

mass of the spring, m = 0.5 kg

total mechanical energy of the spring, E = 12 J

Determine the spring constant, k as follows;

E = ¹/₂kA²

kA² = 2E

k = (2E) / (A²)

k = (2 x 12) / (0.45²)

k = 118.519 N/m

Determine the angular frequency, ω;

\omega = \sqrt{\frac{k}{m} } \\\\\omega =  \sqrt{\frac{118.519}{0.5} } \\\\\omega = 15.396 \ rad/s

Determine the frequency of the oscillation;

ω = 2πf

f = (ω) / (2π)

f = (15.396) / (2π)

f = 2.45 Hz

Therefore, the frequency of the oscillation is 2.45 Hz.

8 0
2 years ago
There are only 2 GENDERS and it proven with science
VikaD [51]

Answer:

https://young.scot/get-informed/national/gender-identity-terms

Explanation:

6 0
2 years ago
Other questions:
  • Aerobic exercise is exercise where oxygen is not present.
    8·1 answer
  • A hot air balloon is flying above Grovenburg. To the left side of the balloon, the balloonist measure the angle of depression to
    8·1 answer
  • How many electrons, protons, and neutrons are in chlorine?
    9·1 answer
  • A 31 kg crate full of very cute kittens is placed on an incline that is 17° below the horizontal. The crate is connected to a sp
    14·1 answer
  • Which is capeble of housing astronaughts while they conduct reasearch
    5·2 answers
  • How does this level of organization relate to cells? To organ systems?
    15·1 answer
  • 2. A mass-spring system oscillates with a frequency of 20 Hz. What is the period?
    15·1 answer
  • An unladen swallow that weighs 0.03 kg flies straight northeast a distance of 125 km in 4.0 hours. With the x x direction due ea
    11·1 answer
  • A circuit in a radio receiver requires a current of at least 1.0 microamp in order to detect a signal. How many electrons pass t
    11·1 answer
  • 3. A penguin waddles 8 m uphill before sliding back down to its friends in 2 seconds. If the penguin ends where it started, what
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!