Answer:

Explanation:
We know that the frequency of the nth harmonic is given by
, where
is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

So the tension is:

Which for our values is:

I can think of two possible and logical questions for the problem given. First, you can calculate for the maximum height reached by the blue ball. Second, you can compute the length of time for the two balls to be at the same height. If so, the solution are as follows:
When the object is thrown upwards or when the object is dropped from a height, the only force acting upon it is the gravitational force. Because of this, it simplifies equations of motion.
1. For the maximum height, the equation is
H = v₀²/2g
where
v₀ is the initial speed
g is the acceleration due to gravity equal to 9.81 m/s²
For the blue ball, v₀ = 21.8 m/s. Substituting the values:
H = (21.8 m/s)²/2(9.81m/s²)
H = 24.22 m
The maximum height reached by the blue ball is 24.22 m + 0.9 = 25.12 m.
2. For this, you equate the y values of both balls:
y for red ball = y for blue ball
v₀t + 0.5gt² = v₀t + 0.5gt²
(10.4 m/s)t + 0.5(9.81 m/s²)(t²) + 26.6 m = (21.8 m/s)t + 0.5(9.81 m/s²)(t²) + 0.9 m
Solving for t,
t = 2.25 seconds
Thus, the two balls would be at the same height after 2.25 seconds.
Answer:
any object that has density more than 1.4
Explanation:
The object that has density more than 1.4 is denser than the honey
Assuming that the can is motionless, we can then assume that the vertical component of T = mg and that Fe = the horizontal component of T.
<span> Since T itself is larger than it's vertical or horizontal components separately, then T is greater than all the forces.</span>