Answer:
If voltage is kept constant across the resistor itself, it' current will reduce. If the resistance is part of oscillator circuit, frequency response will change. If it is in series with capacitor or inductor, it will change the damping effect.
Explanation:
Answer: -1038.8 kJ
Explanation:
From the question, we can see that PV^n = constant. And as such, we can deduce that it is a polytropic process. Thus, we can use the polytropic work equation to calculate the needed work input.
from the question we were given
Mass of nitrogen, m = 7kg
initial temperature, T1 = 250k
Final temperature, T2 = 450k
Polytropic index, n = 1.4
Specific gas constant, R = 0.2968kJ/kgK
W = [p2 * v2 - p1 * v1] / 1 - n
W = [m * R * T2 - T1] / 1 - n
W = 7*0.2968*(450 - 250)] / 1 - 1.4
W = [7*0.2968*200] / -0.4
W = 415.52 / -0.4
W = -1038.8 kJ
Answer:
<em>radius of the loop = 7.9 mm</em>
<em>number of turns N ≅ 399 turns</em>
Explanation:
length of wire L= 2 m
field strength B = 3 mT = 0.003 T
current I = 12 A
recall that field strength B = μnI
where n is the turn per unit length
vacuum permeability μ = = 1.256 x 10^-6 T-m/A
imputing values, we have
0.003 = 1.256 x 10^−6 x n x 12
0.003 = 1.507 x 10^-5 x n
n = 199.07 turns per unit length
for a length of 2 m,
number of loop N = 2 x 199.07 = 398.14 ≅ <em>399 turns</em>
since there are approximately 399 turns formed by the 2 m length of wire, it means that each loop is formed by 2/399 = 0.005 m of the wire.
this length is also equal to the circumference of each loop
the circumference of each loop =
0.005 = 2 x 3.142 x r
r = 0.005/6.284 = = 0.0079 m =<em> 7.9 mm</em>
Basically, this problem asks you to convert kilocalories (kcal) to kilojoules (kJ). Both are units of energy. To convert kcal to kJ, the equivalence is: 1 kcal = 4.184 kJ. Through dimensional analysis, the solution is as follows:
750 kcal * 4.184 kJ/1 kcal = 3,138 kJ