Explanation:
Conjugated diene is the one that contains alternate double bonds in its structure. That means both the double bonds are separated by a single bond.
Cumulated diene is the one that contains two double bonds on a single atom. This means it has two double bonds continuously.
Isolated double-bonded compound has a single bond isolated by two to three single bonds.
Compound A: Two alkenes are joined by a sigma bond.
For example:
It is a conjugated diene.
Compound B: Two alkenes are joined by a C H 2 group.
It is a cumulative diene.
Compound C: Two alkenes are joined by C H 2 C H 2.
Then it is an isolated alkene.
Compound D: A cyclohexene has a double bond between carbons 1 and 2. Carbon 3 is an sp 2 carbon that is bonded to another s p 2 carbon with an alkyl substituent.
Hence, compound D is a conjugated diene.
• Liquid at room temperature
•Gas at room temperature
• Argon has approximately the same solubility in water as oxygen and is 2.5 times more soluble in water than nitrogen. Argon is colorless, odorless, nonflammable and nontoxic as a solid, liquid or gas. Argon is chemically inert under most conditions and forms no confirmed stable compounds at room temperature.
Answer:
6⅔ shifts
Explanation:
From the question given:
A shift = 4 hours
Pay = $8.25 per hour
Next, we shall determine the number of hours that will result in a pay of $220. This can be obtained as follow:
$8.25 = 1 hour
Therefore,
$220 = $220 × 1 hour / $8.25
$220 = 220/8.25 hours.
$220 = 80/3 hours
$220 = 26⅔ hours
Therefore, it will take 26⅔ hours to receive a pay of $220.
Finally, we shall determine the number of shifts in 26⅔ hours. This can be obtained as follow:
4 hours = 1 shift
Therefore,
26⅔ hours = 26⅔ ÷ 4
26⅔ hours = 80/3 × 1/4
26⅔ hours = 80/12
26⅔ hours = 20/3
26⅔ hours = 6⅔ shifts
Therefore, she will work 6⅔ shifts in order to receive a pay of $220
1 mol of CO2 is 44.01g/mol
So multiply that by 2 to get 2 mol of CO2, which is 88.02g
EM is created by moving charges back and forth will produce oscillating electric and magnetic fields, and these travel at the speed of light