Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
Answer:
The spring constant is 3750 N/m
Explanation:
Use the following two relationships:
(Work) = (Force) x (Displacement)
(Force) = (Spring constant) x (Displacement)
=>
(Spring constant) = (Force) / (Displacement) = (Work) / (Displacement)^2
(Spring constant) = 6.0 kg.(m^2/s^2) / 0.0016 m^2 = 3750 N/m
The spring constant is 3750 N/m
The answer is C guide and inspire good conduct
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
Answer:
For the first one shown, the answer is Directly Proportional, The second one is Inversly Proportional, and the last is fourtl times the original value