The correct answers are as follows:
<span>1) hydrogenous sediment
2)sand and gravel
3) They rapidly break down at surface temperatures and pressures.</span>
Answer:
T = 764.41 N
Explanation:
In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:
(1)
m: mass object = 2.3 kg
r: radius of the circular orbit = 0.034 m
v: tangential speed of the object
However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:
You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:
you replace this value of v in the equation (1). Also, you replace the values of r and m:
hence, the tension in the string must be T = Fc = 764.41 N
Answer:
-1m/s
Explanation:
We can calculate the speed of block A after collision
According to collision theory:
MaVa+MbVb = MaVa+MbVb (after collision)
Substitute the given values
5(3)+10(0) = 5Va+10(2)
15+0 = 5Va + 20
5Va = 15-20
5Va = -5
Va = -5/5
Va = -1m/s
Hence the velocity of ball A after collision is -1m/s
Note that the velocity of block B is zero before collision since it is stationary
Answer: Last option
2.27 m/s2
Explanation:
As the runner is running at a constant speed then the only acceleration present in the movement is the centripetal acceleration.
If we call a_c to the centripetal acceleration then, by definition
in this case we know the speed of the runner
The radius "r" will be the distance from the runner to the center of the track
The answer is the last option
<h2>
Answer:</h2><h2>
It is due to a refractment of light.</h2>
Sound moves faster in warmer air than colder air the way bends away from the warm air and back towards of air.