Answer:
2.3 Nm clockwise
Explanation:
Take counterclockwise to be positive and clockwise to be negative.
∑τ = (3 N) (2.5 m) − (7 N) (1.4 m)
∑τ = 7.5 Nm − 9.8 Nm
∑τ = -2.3 Nm
The net torque is 2.3 Nm clockwise.
Any ride that oscillates back and forth or moves only in a complete circle utilizes periodic motion.
(a) The period of the oscillation is 0.8 s.
(b) The frequency of the oscillation is 1.25 Hz.
(c) The angular frequency of the oscillation is 7.885 rad/s.
(d) The amplitude of the oscillation is 3 cm.
(e) The force constant of the spring is 148.1 N/m.
The given parameters:
- <em>Mass of the ball, m = 2.4 kg</em>
<em />
From the given graph, we can determine the missing parameters.
The amplitude of the wave is the maximum displacement, A = 3 cm
The period of the oscillation is the time taken to make one complete cycle.
T = 0.8 s
The frequency of the oscillation is calculated as follows;

The angular frequency of the oscillation is calculated as follows;

The force constant of the spring is calculated as follows;

Learn more about general wave equation here: brainly.com/question/25699025
Answer:
Electrons.
Explanation:
Electricity was discovered before the discovery of electrons by J.J Thompson in 1896. Before the electron, it was thought that it is the positive ions that move through the wire and carry current—that's why today the conventional current represents the flow of positive charges.
After J.J Thompson's discovery of the electrons, it was realized that it is the electrons that actually carry the current through the conductor. But changing the direction of the conventional current didn't seem appropriate, and that's why the convention continues to be used to this day—reminding us that once it were the positive ions that were thought to carry the current.