A planes wings are slightly tilted catching the air as it passes, keeping it afloat
a parachute has a cupping effect where it can only take so much, so it slows down your descendence
Answer:The answer is B
Explanation:
A generator produces electricity. Energy enters the system (generator) as kinetic energy. It is converted into electrical energy, which can run electrical appliances. Some energy is always wasted as heat and sound. Therefore, Choice B is the best answer.
Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.
Answer:

Explanation:
First we have to find the time required for train to travel 60 meters and impact the car, this is an uniform linear motion:

The reaction time of the driver before starting to accelerate was 0.50 seconds. So, remaining time for driver is 1.5 seconds.
Now, we have to calculate the distance traveled for the driver in this 0.5 seconds before he start to accelerate. Again, is an uniform linear motion:

The driver cover 10 meters in this 0.5 seconds. So, the remaining distance to be cover in 1.5 seconds by the driver are 35 meters. We calculate the minimum acceleration required by the car in order to cross the tracks before the train arrive, Since this is an uniformly accelerated motion, we use the following equation:

Answer:
a) = 258352.5J
b) = 23.63 m/s
c) = 1.8m
Explanation:
Data;
Mass = 925kg
Distance (s) = 28.5m
Force constant (k) = 8.0*10⁴ N/m
g = 9.8 m/s²
a) = work = force * distance
But force = mass * acceleration
Force = 925 * 9.8 = 9065N
Work = F * s = 9065 * 28.5 = 258352.5J
b) acceleration (a) = (v² - u²) / 2s
a = v² / 2s
v² = a * 2s
v² = 9.8 * (2 * 28.5)
v² = 9.8 * 57
v² = 558.6
v = √(558.6)
V = 23.63 m/s
C). The work stops when the work done to raise the spring equals the work done to stop it by the spring
W = ½kx²
258352.5 = ½ * 8.0*10⁴ * x²
(2 * 258352.5) = 8.0*10⁴x²
516705 = 8.0*10⁴x²
X² = 516705 / 8.0*10⁴
X² = 6.46
X = √(6.46)
X = 2.54m
The compression was about 2.54m