1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
3 years ago
11

A vertical steel beam in a building supports a load of 6.0×10⁴. If the length of the beam is 4.0m and it's cross-sectional area

is 8.0×10^-3m². Find the diameter of the beam which is compressed along its length
Physics
1 answer:
Furkat [3]3 years ago
3 0

Answer:

DL = 1.5*10^-4[m]

Explanation:

First we will determine the initial values of the problem, in this way we have:

F = 60000[N]

L = 4 [m]

A = 0.008 [m^2]

DL = distance of the beam compressed along its length [m]

With the following equation we can find DL

\frac{F}{A} = Y*\frac{DL}{L} \\where:\\Y = young's modulus = 2*10^{11} [Pa]\\DL=\frac{F*L}{Y*A} \\DL=\frac{60000*4}{2*10^{11} *0.008} \\DL= 1.5*10^{-4} [m]

Note: The question should be related with the distance, not with the diameter, since the diameter can be found very easily using the equation for a circular area.

A=\frac{\pi}{4} *D^{2} \\D = \sqrt{\frac{A*4}{\pi} } \\D =  \sqrt{\frac{0.008*4}{\\pi } \\\\D = 0.1[m]

You might be interested in
a solid metal sphere of radius 3.00m carries a total charge of -5.50. what is the magnitude of the electric field at a distance
aivan3 [116]

Answer:

(a) Electric field at 0.250 m is zero.

(b)  Electric field at 2.90 m is zero.

(c) Electric field at 3.10 m is - 5.15 x 10³ V/m.

(d) Electric field at 8.00 m is - 0.77 x 10³ V/m.

Explanation:

Let Q and R are the charge and radius of the solid metal sphere. The solid metal sphere behave as conductor, so total charge Q is on the surface of the sphere.

Electric field inside and outside the metal sphere is :

E = 0 for r ≤ R ( inside )

  = \frac{KQ}{r^{2} } for r > R ( outside )

Here K is electric constant and r is the distance from the center of the metal sphere.

(a) Electric field at 0.250 m is zero as r < R i.e. 0.250 m < 3 m from the above equation.

(b)  Electric field at 2.90 m is zero as r < R i.e. 2.90 m < 3 m from the above equation.

(c) Electric field at 3.10 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 3.10 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{3.10^{2} }

E = - 5.15 x 10³ V/m

(d) Electric field at 8.00 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 8.00 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{8^{2} }

E = - 0.77 x 10³ V/m

8 0
3 years ago
As a prank, your friends have kidnapped you in your sleep, and transported you out onto the ice covering a local pond. When you
Ilia_Sergeevich [38]

Answer:

Explained

Explanation:

You should throw your boot in the direction away from the closest shore so that the reaction force is towards the closest shore.

8 0
3 years ago
Static, sliding and rolling are types of friction true or false
Marina CMI [18]
True because friction happens when two things are rubbed against each other and it creates force and sliding something vigorously against something else can create force.
4 0
3 years ago
Read 2 more answers
A hockey puck is traveling to the left with a velocity of v=10 when it is struck by the hockey stick
Lera25 [3.4K]
We have to calculate the impulse of a hockey puck.
Imp = m * ( v 1 - v 2 ) = m * Δ v
v 1 = - 10 i m/s,
v 2 = ( 20 * cos 40° ) i + ( 20 * sin 40° ) j =
= ( 20 * 0.766 ) i + ( 20 * 0.64278 ) j = ( 15.32 i + 12.855 j ) m/s
Δ v = ( 15.32 i + 12.855 j ) - ( - 10 i ) =
= 15.32 i + 12.855 j + 10 i = 25.32 i + 12.855 j
| Δv | = √ ( 25.32² + 12.855²) = √806.35 = 28.4 m/s
Imp = 0.2 kg * 28.4 m/s = 5.68 N-s
Answer: D ) 5.68 N-s. 
 
4 0
3 years ago
A motorist enters a freeway at 45 km/h and accelerates uniformly to 99 km/h. From the odometer in the car, the motorist knows th
Marat540 [252]

Answer:

a)  19440 km/h²

b) 10 sec

Explanation:

v₀ = initial velocity of the car = 45 km/h

v = final velocity achieved by the car = 99 km/h

d = distance traveled by the car while accelerating = 0.2 km

a = acceleration of the car

Using the kinematics equation

v² = v₀² + 2 a d

99² = 45² + 2 a (0.2)

a = 19440 km/h²

b)

t = time required to reach the final velocity

Using the kinematics equation

v = v₀ + a t

99 = 45 + (19440) t

t = 0.00278 h

t = 0.00278 x 3600 sec

t = 10 sec

5 0
3 years ago
Other questions:
  • I think these two are simple questions.. but I need help asap..... TT
    6·1 answer
  • An Australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down to a speed of 9.40 m/s in 3.50 s
    13·1 answer
  • Plz help I need the answers to this ASAP
    9·1 answer
  • Humans start from a single cell. Eventually, as cells divide, they start to differentiate, or specialize. Some cells are special
    6·1 answer
  • During which phase change does the arrangement of water molecules become the least orderly?
    13·2 answers
  • What are the importance of informal education?​
    6·1 answer
  • Can someone help me with these two? Pls
    9·1 answer
  • Help please i need it asap
    11·2 answers
  • Plzzzzzzzzzzzzzzzzzzzzzzzzzz help 20 points
    7·2 answers
  • Two cars are traveling from the same point. Car A has a velocity of 12.5 m/s while car B has zero velocity but an acceleration o
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!