Methane is the compound CH4, and burning it uses the reaction:
CH4 + O2 -> CO2 + H2O, which is rather exothermic. To find the heat released by burning a certain amount of the substance, you should look at the bond enthalpy of each compound, and then compare the values before and after the reaction. In methane, there are 4 C-H bonds, which have bond energy of 416 kj/mol, resulting in a total bond energy of 1664 kj/mol. O2 is 494 kj/mol. Therefore we have a total of 2080 kj/mol on the left side. On the right side we have CO2, which has 2 C=O bonds, each at 799 kj/mol each, resulting in 1598 kj/mol, and H2O has 2 O-H bonds, at 459kj/mol each, resulting in a total of 2516 kj/mol on the right hand side. Now, this may be confusing because the left hand side seems to have less heat than the right, but you just need to remember: making minus breaking, which results in a total change of 436kj/mol heat evolved.
Now it is a simple matter of find the mols of CH4 reacted, using n=m/mr.
n = 9.5/16.042 = 0.592195 mol
Therefore, if we reacted 0.592195 mol, and we produced 436 kj for one mol, the total amount of energy evolved was 436*<span>0.592195 kj, or 258.197 kj.</span>
Answer:
The equation for wave speed can be used to calculate the speed of a wave when both wavelength and wave frequency are known. Consider an ocean wave with a wavelength of 3 meters and a frequency of 1 hertz. The speed of the wave is: Speed = 3 m x 1 wave/s = 3 m/s.
SO... take your meters and hezert and do tha same
Explanation:
Plz mark me as brainlyist
Since intermolecular forces is stronger in a solid than a liquid, then NaCl has stronger intermolecular forces than H2O.
Intermolecular forces exists between molecules of the same or different kinds. Water has a dipole moment hence it can interact effectively with the ions in NaCl. This leads to an ion dipole interaction that results in the dissolution of NaCl in H2O.
NaCl is a solid and water is a liquid. Since intermolecular forces is stronger in a solid than a liquid, then NaCl has stronger intermolecular forces than H2O.
Hence, the best argument that compares the intermolecular interactions in water and NaCl is; salt is a solid and water is a liquid, so water has stronger intramolecular forces.
Learn more: brainly.com/question/12108425
The correct angle between the atones in a tetrahedral molecule would be B. 109 degrees.