Following reaction is involved in above system
HOCl(aq) ↔ H+(aq) + OCl-<span>(aq)
</span>OCl-(aq) + H2O(l) ↔ HOCl(aq) + OH-<span>(aq)
</span>
Now, if the system is obeys 1st order kinetics we have
K = [OCl-][H+<span>]/[HOCl] ............. (1)
</span>∴ [HOCl-] / [OCl-] = [H+] (1 / 3.0 * 10-8<span>) ............. (2)
</span>
and now considering that system is obeying 2nd order kinetics, we have
K = [OH-][HOCl-] / [OCl-] ................. (3<span>)
</span>Subs 2 in 3 we get
K = [OH-][H+] (1 / 3.0 * 10-8<span>)
</span>we know that, [OH-][H+] = 10<span>-14
</span>∴K = 3.3 * 10<span>-7
</span>
Thus, correct answer is e i.e none of these
Answer:
The given atom is of Ca.
Explanation:
Given data:
Speed of atom = 1% of speed of light
De-broglie wavelength = 3.31×10⁻³ pm (3.31×10⁻³ / 10¹² = 3.31×10⁻¹⁵ m)
What is element = ?
Solution:
Formula:
m = h/λv
m = mass of particle
h = planks constant
v = speed of particle
λ = wavelength
Now we will put the values in formula.
m = h/λv
m = 6.63×10⁻³⁴kg. m².s⁻¹/3.31×10⁻¹⁵ m ×( 1/100)×3×10⁸ m/s
m = 6.63×10⁻³⁴kg. m².s⁻¹/ 0.099×10⁻⁷m²/s
m = 66.97×10⁻²⁷ Kg/atom
or
6.69×10⁻²⁶ Kg/atom
Now here we will use the Avogadro number.
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
Now in given problem,
6.69×10⁻²⁶ Kg/atom × 6.022 × 10²³ atoms/ mol × 1000 g/ 1kg
40.3×10⁻³×10³g/mol
40.3 g/mol
So the given atom is of Ca.
Answer:
both will be at liquid state. the particles will move rapidly in all directions and will collide with other particles in random motion
I believe that the answer is 12 because there is already 3 O molecules and since its in parentheses with 3 outside it that means that there are 3 of those CO molecules meaning that for every 1 CO there will be 3 O’s so 3, four times Is 12