Calcium chloride forms an ionic compound with a
regularly arranged lattice of oppositely charged ions.
The Na+ and Cl- ions are held together by
strong electrostatic forces.
Hope that helps
Answer:
1.60x10⁶ billions of g of CO₂
Explanation:
Let's calculate the production of CO₂ by a single human in a day. The molar mass of glucose is 180.156 g/mol and CO₂ is 44.01 g/mol. By the stoichiometry of the reaction:
1 mol of C₆H₁₂O₆ -------------------------- 6 moles of CO₂
Transforming for mass multiplying the number of moles by the molar mass:
180.156 g of C₆H₁₂O₆ ----------------- 264.06 g of CO₂
4.59x10² g ---------------- x
By a simple direct three rule:
180.156x = 121203.54
x = 672.77 g of CO₂ per day per human
So, in a year, 6.50 billion of human produce:
672.77 * 365 * 6.50 billion = 1.60x10⁶ billions of g of CO₂
Answer:
Chemists investigate the properties of matter at the level of atoms and molecules. They measure proportions and reaction rates in order to understand unfamiliar substances and how they behave, or to create new compounds for use in a variety of practical applications.
Explanation:
Answer:
- <u>Tellurium (Te) and iodine (I) are two elements </u><em><u>next to each other that have decreasing atomic masses.</u></em>
Explanation:
The <em>atomic mass</em> of tellurium (Te) is 127.60 g/mol and the atomic mass of iodine (I) is 126.904 g/mol; so, in spite of iodine being to the right of tellurium in the periodic table (because the atomic number of iodine is bigger than the atomic number of tellurium), the atomic mass of iodine is less than the atomic mass of tellurium.
The elements are arranged in increasing order of atomic number in the periodic table.
The atomic number is equal to the number of protons and the mass number is the sum of the protons and neutrons.
The mass number, except for the mass defect, represents the atomic mass of a particular isotope. But the atomic mass of an element is the weighted average of the atomic masses of the different natural isotopes of the element.
Normally, as the atomic number increases, you find that the atomic mass increases, so most of the elements in the periodic table, which as said are arranged in icreasing atomic number order, match with increasing atomic masses. But the relative isotope abundaces of the elements can change that.
It is the case that the most common isotopes of tellurium have atomic masses 128 amu and 130 amu, whilst most common isotopes of iodine have an atomic mass 127 amu. As result, tellurium has an average atomic mass of 127.60 g/mol whilst iodine has an average atomic mass of 126.904 g/mol.
Answer:
1) 2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
Explanation:
1) Possible reactions
2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Mass of each metal
a) Mass of Cu
The waste was the unreacted copper.
Mass of Cu = 2.5 g
b) Masses of Al and Fe
We have two relations
:
Mass of Al + mass of Fe = 10 g - 2.5 g = 7.5 g
H₂ from Al + H₂ from Fe = 6.38 L at NTP
i) Calculate the moles of H₂
NTP is 20 °C and 1 atm.

(ii) Solve the relationship
Let x = mass of Al. Then
7.5 - x = mass of Fe
Moles of Al = x/27
Moles of Fe = (7.5 - x)/56
Moles of H₂ from Al = (3/2) × Moles of Al = (3/2) × (x/27) = x
/18
Moles of H₂ from Fe = (1/1) × Moles of Fe = (7.5 - x)/56
∴ x/18 + (7.5 - x)/56 = 0.2652
56x + 18(7.5 - x) = 267.3
56x + 135 - 18x = 267.3
38x = 132.3
x = 3.5 g
Mass of Al = 3.5 g
Mass of Fe = 7.5 g - 3.5 g = 4.0 g
The masses of the metals are Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g