Answer:
The answer to your question is below
Explanation:
Carboxyl group is the characteristic group of carboxylic acids.
It is composed by 1 atom of carbon, 2 atoms of oxygen and 1 atom of hydrogen.
Its structure is - COOH
<span>A)photosynthetic bacteria</span>
Answer:
Sp3
Explanation:
Hydrocarbon can be defined as an organic compound that comprises of hydrogen and carbon only. Some examples of hydrocarbon are methane, butane, ethane, ethene, etc.
Hybridization can be defined as a phenomenon which involves the combination of two or more atomic orbitals to form the same number of hybrid orbitals, with each of the orbitals having the same shape and energy.
In Organic chemistry, ethane is considered to be a tetrahedral carbon and it's Sp3 hybridized.
A tetrahedral carbon typically comprises of four bonds that are 109. 5° apart while a linear carbon atom comprises of two (2) bonds that are 180° apart.
Hence, the molecule of ethane posses a Sp3 hybridization because it has four bonds arrange with a tetrahedral geometry.
Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg
Answer:
You will need 12 moles of F2 if you want to make 8 moles of AlF3.
Explanation:
It takes 3 moles F2 to make 2 moles of AlF3 (this will be our mole ratio)
2 moles AlF3/3 moles F2 =8 moles AlF3/x moles AlF3.
x=12 moles AlF3