The equation is pv=nrt. So to decrease pressure, one would increase volume, decrease moles, or decrease temperature.
D is to stop the current and the force can be removed
When aluminum metal is made to contact with chlorine gas (Cl₂), a highly exothermic reaction proceeds. This produces aluminum chloride (AlCl₃) powder. The balanced chemical equation for this reaction is shown below:
2Al(s) + 3Cl₂(g) → 2AlCl₃(s)
Since it was stated that aluminum is in excess, this means that the amount of AlCl₃ produced will only depend on the amount of Cl₂ gas available. The molar mass of Cl₂ is 70.906 g/mol. Using stoichiometry, we have the following equation:
(21.0 g Cl₂/ 70.906 g/mol Cl₂) x 2 mol AlCl₃/ 2 mol Cl₂ = 0.1974 mol AlCl₃
Thus, we have determined that 0.1974 <span>moles of aluminum chloride can be produced from 21.0 g of chlorine gas. </span>
Ca₁₀(PO₄)₆(OH)₂ or Ca(OH)₂·3Ca₃(PO₄)₂
PO₄³⁻ phosphate ion
OH⁻ oxyhydroxide ion
Ca²⁺ calcium ion
10*(+2) + 6*(-3) + 2*(-1) = 0
10Ca²⁺ 6PO₄³⁻ 2OH⁻