Answer:
Groceries stay in the bag.
Explanation:
Given:
Maximum force = 250 N
Bag filled with = 20 kg
Lifted acceleration = 
Solution:
We need to calculate the exerted force on the grocery bag by using Newton's second law.

Where:
F = Exerted force on the object.
m = Mass of the object in kg
a = Acceleration of the object in 
Now, we substitute m = 20 kg and a =
in Newton's second law,


Since, the exerted force on the bag is less than 250 N, the groceries will stay in the bag.
Force = (mass) x (acceleration)
Force = (18 kg) x (3 m/s²) = 54 newtons
As long as you continue pushing the cart with 54 newtons of force,
it will accelerate at 3 m/s².
At the instant you release it, or keep your hands on it but stop pushing,
it will stop accelerating. It'll continue forward at the speed it had when
the 54 newtons of force stopped.
Answer:
Explanation:
The rate of change in volume is proportional to the surface area:
dV/dt = kA
Integrating:
V = kAt + C
At t=0, V = s, so:
s = kA(0) + C
C = s
Therefore:
V = kAt + s
Answer:
K.E=365.2 J
Explanation:
Given data
Weight w =953 N
radius r=1.68 m
F=73.9 N
t=2.55 s
g=9.8 m/s²
To find
Kinetic Energy K.E
Solution
From the moment of inertia

The angular acceleration is given as

The angular velocity is given as

So the Kinetic Energy is given as