1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
13

N experiment is performed in deep space with two uniform spheres, one with mass 27.0 and the other with mass 107.0 . They have e

qual radii, = 0.10 . The spheres are released from rest with their centers a distance 41.0 apart. They accelerate toward each other because of their mutual gravitational attraction. You can ignore all gravitational forces other than that between the two spheres.
A) When their centers are a distance 26.0 apart, find the speed of the 27.0 sphere.

B) Find the speed of the sphere with mass 107.0 .

C) Find the magnitude of the relative velocity with which one sphere is approaching to the other.

D) How far from the initial position of the center of the 27.0 sphere do the surfaces of the two spheres collide?
Physics
1 answer:
Reptile [31]3 years ago
3 0

Answer:

Explanation:

Apply the law of conservation of energy

KE_i+PE_i=KE_f+PE_f

Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)

from the law of conservation of the linear momentum

m_1v_1=m_2v_2

Therefore,

Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)

=\frac{1}{2} [m_1v_1^2+m_2[\frac{m_1v_1}{m_2} ]^2]\\\\=\frac{1}{2} [m_1v_1^2+\frac{m_1^2v_1^2}{m_2} ]\\\\=\frac{m_1v_1^2}{2} [\frac{m_1+m_2}{m_2} ]

v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]

Substitute the values in the above result

v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]

=[\frac{2(6.67\times 10^-^1^1)(107)^2}{27+107} ][\frac{1}{26} -\frac{1}{41}] \\\\=1.6038\times 10^-^1^0\\\\v_1=\sqrt{1.6038\times 106-^1^0} \\\\=1.2664 \times 10^-^5m/s

B)  the speed of the sphere with mass 107.0 kg is

v_2=\frac{m_1v_1}{m_2}

=[\frac{27}{107} ](1.2664 \times 10^-^5)\\\\=3.195\times 10^-^6m/s

C)  the magnitude of the relative velocity with which one sphere is

v_r=v_1+v_2\\\\=1.2664\times 10^-^5+3.195\times10^-^6\\\\=15.859\times10^-^6m/s

D) the distance of the centre is proportional to the acceleration

\frac{x_1}{x_2} =\frac{a_1}{a_2} \\\\=\frac{m_2}{m_1} \\\\=3.962

Thus,

x_1=3.962x_2

and

x_2=0.252x_1

When the sphere make contact with eachother

Therefore,

x_1+x_2+2r=41\\x_1+0,252x_1+2r=41\\1.252x_1+2r=41\\x_1=32.747-1.597r

And

x_1+x_2+2r=41\\3.962x_2+x_2+2r+41\\4.962x_2+2r=41\\x_2=8.262-0.403r

The point of contact of the sphere is

32.747-1.597r=8.262-0.403r\\\\r=\frac{24.485}{1.194} \\\\=20.506m

You might be interested in
On his way to school, a student starts out walking quickly and then slows down as he gets closer to the school. Which graph best
Leni [432]

' A ' is the graph that shows it.

3 0
3 years ago
Read 2 more answers
The rectangular coordinates of a point are (5.00, y) and the polar coordinates of
Otrada [13]

Answer:

Explanation:

Polar coordinates formula

Summary. To convert from Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) : x = r × cos( θ ) y = r × sin( θ )

6 0
3 years ago
PLEASE HELP ME ASAP!!!!!!!!!
NNADVOKAT [17]

Answer:

letter C. velocity hope this helps

7 0
3 years ago
Potassium ions (K+) move across a 7.0 -mm- thick cell membrane from the inside to the outside. The potential inside the cell is
Reil [10]

Explanation:

Relation between potential energy and charge is as follows.

           U = qV

or,    \Delta U = q \times \Delta V

                   = 1.6 \times 10^{-19} \times 70 \times 10^{-3}

                   = 112 \times 10^{-22} J

or,                = 1.12 \times 10^{20} J

Therefore, we can conclude that change in the electrical potential energy \Delta U is 1.12 \times 10^{20} J.

7 0
3 years ago
An air bubble has a volume of 2.0 cm3 when it is released by a submarine 100 m below the surface of a freshwater lake. What is t
UkoKoshka [18]

Answer:

21.35 cm^3

Explanation:

let the volume at the surface of fresh water is V.

The volume at a depth of 100 m is V' = 2 cm^3

temperature remains constant.

density of water, d = 1000 kg/m^3

Pressure at the surface of fresh water is atmospheric pressure,

P = Po = 1.013 x 10^5 N/m^2

The pressure at depth 100 m is P' = Po + hdg

P' = 1.013 \times 10^{5}+ 100 \times 1000 \times 9.8

P' = 10.813 x 10^5 N/m^2

Use the Boyle's law

P V = P' V'

1.013 \times 10^{5}\times V = 10.813 \times 10^{5}\times 2

V = 21.35 cm^3

Thus, the volume of air bubble at the surface of fresh water is 21.35 cm^3.

5 0
3 years ago
Other questions:
  • What is the frequency heard by a person driving at 15 m/s toward a blowing factory whistle (750 hz if the speed of sound is 343
    11·1 answer
  • A compressed spring has elastic potential energy. Please select the best answer from the choices provided T F
    6·1 answer
  • WORK + ENERGY: CONCEPTUAL QUESTIONS. 15) A satellite is in a circular orbit above Earth's surface. Why is the work done on the s
    15·2 answers
  • Which of the following best describes a coastal plain?
    12·2 answers
  • A girl jumps forward off of her skateboard. The skateboard weighs much less than the girl. [Friction in the wheels and between t
    8·1 answer
  • Objects with masses of 235 kg and a 535 kg are separated by 0.330 m. (a) find the net gravitational force exerted by these objec
    10·1 answer
  • While walking along the shore of a lake Travis felt a cold breeze. What type of heat energy transfer is this an example of?
    7·1 answer
  • Using arrangement (a), how many rb atoms could be placed on a square surface that is 9.5 cm on a side? the diameter of a rubidiu
    14·1 answer
  • Light____.
    15·2 answers
  • Boo help me please!!!!!!!​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!